Controlling the Cournot-Nash Chaos

The recently developing theory of nonlinear dynamics shows that any economic model can generate a complex dynamics involving chaos if the nonlinearities become strong enough. This study constructs a nonlinear Cournot duopoly model, reveals conditions for the occurrence of chaos, and then considers how to control chaos. The main purpose of this paper is to demonstrate that chaos generated in Cournot competition is in a double bind from the long-run perspective: a firm with a lower marginal production cost prefers a stable (i.e., controlled) market to a chaotic (i.e., uncontrolled) market, while a firm with a higher marginal cost prefers the chaotic market.

[1]  Akio Matsumoto,et al.  Statistical dynamics in a chaotic Cournot model with complementary goods , 2006 .

[2]  Weihong Huang,et al.  Theory of Adaptive Adjustment , 2000 .

[3]  Michael Kopel,et al.  Improving the performance of an economic system: Controlling chaos , 1997 .

[4]  Michele Boldrin,et al.  Equilibrium models displaying endogenous fluctuations and chaos: A survey , 1988 .

[5]  T. Ueta,et al.  Composite Dynamical System for Controlling Chaos , 1995 .

[6]  Tönu Puu,et al.  Oligopoly Dynamics : Models and Tools , 2002 .

[7]  Tapan Mitra,et al.  A note on controlling a chaotic tatonnement , 1998 .

[8]  Richard H. Day,et al.  Complex economic dynamics , 1994 .

[9]  Michael Kopel,et al.  Simple and complex adjustment dynamics in Cournot duopoly models , 1996 .

[10]  F. Szidarovszky,et al.  The Theory of Oligopoly with Multi-Product Firms , 1990 .

[11]  G. Eliasson Discussion of economizing by firms: Rational economizing, but in which world? , 1996 .

[12]  Luigi Montrucchio,et al.  Dynamic complexity in duopoly games , 1986 .

[13]  Tönu Puu,et al.  Attractors, Bifurcations, and Chaos: Nonlinear Phenomena in Economics , 2000 .

[14]  Leo Kaas,et al.  Stabilizing chaos in a dynamic macroeconomic model , 1998 .

[15]  Weihong Huang,et al.  Caution implies profit , 1995 .

[16]  Tönu Puu,et al.  Attractors, Bifurcations, and Chaos , 2000 .

[17]  R. Day Irregular Growth Cycles , 2016 .

[18]  Cars H. Hommes,et al.  On the consistency of backward-looking expectations: The case of the cobweb , 1998 .

[19]  David A. Rand,et al.  Exotic phenomena in games and duopoly models , 1978 .

[20]  Tönu Puu,et al.  Attractors, Bifurcations, & Chaos: Nonlinear Phenomena in Economics , 2000 .

[21]  Hidekatsu Tokumaru,et al.  Autocorrelations of a certain chaos , 1980 .

[22]  E. Ott,et al.  Controlling Chaotic Dynamical Systems , 1991, 1991 American Control Conference.