Simulations of Polarimetric, X-Band Radar Signatures in Supercells. Part I: Description of Experiment and Simulated ρhv Rings

AbstractWith the development of multimoment bulk microphysical schemes and polarimetric radar forward operators, one can better examine convective storms simulated in high-resolution numerical models from a simulated polarimetric radar perspective. Subsequently, relationships between observable and unobservable quantities can be examined that may provide useful information about storm intensity and organization that otherwise would be difficult to obtain. This paper, Part I of a two-part sequence, describes the bulk microphysics scheme, polarimetric radar forward operator, and numerical model configuration used to simulate supercells in eight idealized, horizontally homogenous environments with different wind profiles. The microphysical structure and evolution of copolar cross-correlation coefficient (ρhv) rings associated with simulated supercells are examined in Part I, whereas Part II examines ZDR columns, ZDR rings, and KDP columns. In both papers, some systematic differences between the signature see...

[1]  Kelvin K. Droegemeier,et al.  The Dependence of Numerically Simulated Cyclic Mesocyclogenesis upon Environmental Vertical Wind Shear , 2005 .

[2]  W. Macklin Heat transfer from hailstones , 1963 .

[3]  Jon Petch,et al.  Sensitivity studies of developing convection in a cloud‐resolving model , 2006 .

[4]  Nancy C. Knight,et al.  The Falling Behavior of Hailstones , 1970 .

[5]  Alexander D. Schenkman,et al.  Sensitivity of Real-Data Simulations of the 3 May 1999 Oklahoma City Tornadic Supercell and Associated Tornadoes to Multimoment Microphysics. Part II: Analysis of Buoyancy and Dynamic Pressure Forces in Simulated Tornado-Like Vortices , 2016 .

[6]  Matthew R. Kumjian,et al.  Principles and Applications of Dual-Polarization Weather Radar. Part I: Description of the Polarimetric Radar Variables , 2013 .

[7]  H. Brooks,et al.  Hodograph Curvature and Updraft Intensity in Numerically Modeled Supercells , 1993 .

[8]  J. B. Mead,et al.  A Mobile Rapid-Scanning X-band Polarimetric (RaXPol) Doppler Radar System , 2013 .

[9]  Jothiram Vivekanandan,et al.  Rigorous Approach to Polarimetric Radar Modeling of Hydrometeor Orientation Distributions , 1991 .

[10]  Matthew R. Kumjian,et al.  On the Mechanisms of Rain Formation in an Idealized Supercell Storm , 2015 .

[11]  E. Rasmussen,et al.  Mesocyclone and RFD evolution in simulated supercell storms with varying wind profiles , 2010 .

[12]  Timothy J. Smyth,et al.  Correction for attenuation of radar reflectivity using polarization data , 1998 .

[13]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[14]  V. N. Bringi,et al.  The Effects of Three-Body Scattering on Differential Reflectivity Signatures , 2000 .

[15]  Nancy C. Knight,et al.  Hailstone Shape Factor and Its Relation to Radar Interpretation of Hail , 1986 .

[16]  H. Morrison,et al.  Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part III: Introduction of Multiple Free Categories , 2016 .

[17]  Guifu Zhang,et al.  Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme , 2010 .

[18]  Alexander Khain,et al.  The Anatomy and Physics of Z(DR) Columns: Investigating a Polarimetric Radar Signature with a Spectral Bin Microphysical Model , 2014 .

[19]  Guifu Zhang,et al.  Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and Polarimetric Variables , 2008 .

[20]  Joseph B. Klemp,et al.  On the Rotation and Propagation of Simulated Supercell Thunderstorms , 1985 .

[21]  N Bharadwaj,et al.  THE MIDLATITUDE CONTINENTAL CONVECTIVE CLOUDS EXPERIMENT (MC3E). , 2016, Bulletin of the American Meteorological Society.

[22]  J. Mecikalski,et al.  Ground‐based measurements and dual‐Doppler analysis of 3‐D wind fields and atmospheric circulations induced by a meso‐γ‐scale inland lake , 2010 .

[23]  Jerry M. Straka,et al.  Cloud and Precipitation Microphysics: Principles and Parameterizations , 2009 .

[24]  J. Curry,et al.  A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description , 2005 .

[25]  V. Chandrasekar,et al.  Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: a self-consistent method with constraints , 2001, IEEE Trans. Geosci. Remote. Sens..

[26]  James W. Wilson,et al.  The Flare Echo: Reflectivity and Velocity Signature , 1988 .

[27]  K. Droegemeier,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification , 2000 .

[28]  Emmanouil N. Anagnostou,et al.  High-Resolution Rainfall Estimation from X-Band Polarimetric Radar Measurements , 2004 .

[29]  K. Aydin,et al.  A computational study of polarimetric radar observables in hail , 1990, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Joshua Wurman,et al.  The Role of Multiple-Vortex Tornado Structure in Causing Storm Researcher Fatalities , 2014 .

[31]  William R. Cotton,et al.  New RAMS cloud microphysics parameterization. Part II: The two-moment scheme , 1997 .

[32]  L. Barthès,et al.  Estimation of Gamma Raindrop Size Distribution Parameters: Statistical Fluctuations and Estimation Errors , 2009 .

[33]  Pengfei Zhang,et al.  Polarimetric Radar Characteristics of Melting Hail. Part II: Practical Implications , 2013 .

[34]  R. Rasmussen,et al.  Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model , 1998 .

[35]  S. Ellis,et al.  X-Band Polarimetric Observations of Cross Coupling in the Ice Phase of Convective Storms in Taiwan , 2014 .

[36]  Roy Rasmussen,et al.  A Wind Tunnel and Theoretical Study on the Melting Behavior of Atmospheric Ice Particles: III. Experiment and Theory for Spherical Ice Particles of Radius > 500 μm , 1984 .

[37]  V. Chandrasekar,et al.  Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation at X Band. Part II: Evaluation and Application , 2005 .

[38]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[39]  Richard L. Thompson,et al.  Close Proximity Soundings within Supercell Environments Obtained from the Rapid Update Cycle , 2003 .

[40]  K. Browning,et al.  The Oblateness of Large Hailstones , 1967 .

[41]  R. Rotunno On the evolution of thunderstorm rotation , 1981 .

[42]  Mingjing Tong,et al.  Ensemble Kalman Filter Analyses of the 29–30 May 2004 Oklahoma Tornadic Thunderstorm Using One- and Two-Moment Bulk Microphysics Schemes, with Verification against Polarimetric Radar Data , 2012 .

[43]  V. Chandrasekar,et al.  An Examination of Propagation Effects in Rainfall on Radar Measurements at Microwave Frequencies , 1990 .

[44]  M. Xue,et al.  Comparison of Simulated Polarimetric Signatures in Idealized Supercell Storms Using Two-Moment Bulk Microphysics Schemes in WRF , 2016 .

[45]  Guifu Zhang,et al.  Attenuation Correction and Hydrometeor Classification of High-Resolution, X-band, Dual-Polarized Mobile Radar Measurements in Severe Convective Storms , 2009 .

[46]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[47]  Alexander V. Ryzhkov,et al.  Advantages of Rain Measurements Using Specific Differential Phase , 1996 .

[48]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[49]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar: Principles and Applications , 2001 .

[50]  Jerry M. Straka,et al.  Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations , 2000 .

[51]  A. Ryzhkov The Impact of Beam Broadening on the Quality of Radar Polarimetric Data , 2007 .

[52]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description , 2005 .

[53]  J. C. Hubbert,et al.  Modeling, Error Analysis, and Evaluation of Dual-Polarization Variables Obtained from Simultaneous Horizontal and Vertical Polarization Transmit Radar. Part II: Experimental Data , 2010 .

[54]  E. Rasmussen,et al.  A Baseline Climatology of Sounding-Derived Supercell and Tornado Forecast Parameters , 1998 .

[55]  Alexander V. Ryzhkov Validation of polarimetric methods for attenuation correction at C band , 2007 .

[56]  Conrad L. Ziegler,et al.  Retrieval of Thermal and Microphysical Variables in Observed Convective Storms. , 1985 .

[57]  K. D. Beheng,et al.  A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description , 2006 .

[58]  Joanne Simpson,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations , 1995 .

[59]  C. Knight,et al.  Lobe Structures of Hailstones , 1970 .

[60]  Jacques Testud,et al.  The Rain Profiling Algorithm Applied to Polarimetric Weather Radar , 2000 .

[61]  Gregory Thompson,et al.  Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part II: Case Study Comparisons with Observations and Other Schemes , 2015 .

[62]  K. Droegemeier,et al.  The Sensitivity of Numerically Simulated Cyclic Mesocyclogenesis to Variations in Model Physical and Computational Parameters , 2002 .

[63]  Martin Hagen,et al.  A polarimetric radar forward operator for model evaluation , 2008 .

[64]  Louis J. Wicker,et al.  Low-LevelZDRSignatures in Supercell Forward Flanks: The Role of Size Sorting and Melting of Hail , 2014 .

[65]  R. McTaggart-Cowan,et al.  Sedimentation-Induced Errors in Bulk Microphysics Schemes , 2010 .

[66]  A. Ryzhkov,et al.  Polarimetric Radar Observation Operator for a Cloud Model with Spectral Microphysics , 2011 .

[67]  Emmanouil N. Anagnostou,et al.  X-band Polarimetric Radar Rainfall Measurements in Keys Area Microphysics Project , 2006 .

[69]  A. Ryzhkov,et al.  Polarimetry for Weather Surveillance Radars , 1999 .

[70]  Derek J. Posselt,et al.  Assimilation of Dual-Polarization Radar Observations in Mixed- and Ice-Phase Regions of Convective Storms: Information Content and Forward Model Errors , 2015 .

[71]  Alexander V. Ryzhkov,et al.  Polarimetric Signatures in Supercell Thunderstorms , 2008 .

[72]  Christopher C. Weiss,et al.  The Structure of Tornadoes near Attica, Kansas, on 12 May 2004: High-Resolution, Mobile, Doppler Radar Observations , 2007 .

[73]  V. Chandrasekar,et al.  Short wavelength technology and the potential for distributed networks of small radar systems , 2009, 2009 IEEE Radar Conference.

[74]  J. Wyngaard,et al.  Resolution Requirements for the Simulation of Deep Moist Convection , 2003 .

[75]  V. Chandrasekar,et al.  Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation at X Band. Part I: Theoretical and Empirical Basis , 2005 .

[76]  H. Morrison,et al.  Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests , 2015 .

[77]  Alexander Khain,et al.  Polarimetric Radar Characteristics of Melting Hail. Part I: Theoretical Simulations Using Spectral Microphysical Modeling , 2013 .

[78]  Joseph B. Klemp,et al.  The structure and classification of numerically simulated convective storms in directionally varying wind shears , 1984 .

[79]  Alexander V. Ryzhkov,et al.  Depolarization in Ice Crystals and Its Effect on Radar Polarimetric Measurements , 2007 .

[80]  Louis J. Wicker,et al.  Simulation and Analysis of Tornado Development and Decay within a Three-Dimensional Supercell Thunderstorm , 1995 .

[81]  Daniel T. Dawson,et al.  Comparison of Evaporation and Cold Pool Development between Single-moment and Multi-moment Bulk Microphysics Schemes in Idealized Simulations of Tornadic Thunderstorms , 2009 .

[82]  K. Browning The lobe structure of giant hailstones , 1966 .

[83]  Francesc Junyent,et al.  Close-Range Observations of Tornadoes in Supercells Made with a Dual-Polarization, X-Band, Mobile Doppler Radar , 2007 .

[84]  Brenda Dolan,et al.  A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars , 2009 .

[85]  Eric C. Bruning,et al.  Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics , 2010 .

[86]  Joseph B. Klemp,et al.  The Influence of the Shear-Induced Pressure Gradient on Thunderstorm Motion , 1982 .

[87]  Joseph B. Klemp,et al.  The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy , 1982 .

[88]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter , 2005 .

[89]  Scott Ellis,et al.  Modeling, Error Analysis, and Evaluation of Dual-Polarization Variables Obtained from Simultaneous Horizontal and Vertical Polarization Transmit Radar. Part I: Modeling and Antenna Errors , 2010 .

[90]  V. Broeke,et al.  Effects of Mid- and Upper-Level Dry Layers on Microphysics of Simulated Supercell Storms , 2014 .

[91]  A. Ryzhkov,et al.  A ZDR Column Detection Algorithm to Examine Convective Storm Updrafts , 2015 .

[92]  Dusan S. Zrnic,et al.  Three-body scattering produces precipitation signature of special diagnostic value , 1987 .

[93]  Roy Rasmussen,et al.  Melting and Shedding of Graupel and Hail. Part I: Model Physics , 1987 .

[94]  Erik N. Rasmussen,et al.  Refined Supercell and Tornado Forecast Parameters , 2003 .

[95]  Robert B. Wilhelmson,et al.  Observed and numerically simulated structure of a mature supercell thunderstorm , 1981 .

[96]  Daniel T. Dawson,et al.  Simulations of Polarimetric, X-Band Radar Signatures in Supercells. Part II: ZDR Columns and Rings and KDP Columns , 2017 .

[98]  W. D. Rust,et al.  Polarimetric and Electrical Characteristics of a Lightning Ring in a Supercell Storm , 2010 .

[99]  V. Chandrasekar,et al.  Polarimetric Radar Observations in the Ice Region of Precipitating Clouds at C-Band and X-Band Radar Frequencies , 2013 .

[100]  Stephen J. Frasier,et al.  Observations of Polarimetric Signatures in Supercells by an X-Band Mobile Doppler Radar , 2013 .

[101]  C. Ulbrich Natural Variations in the Analytical Form of the Raindrop Size Distribution , 1983 .

[102]  A. Ryzhkov,et al.  A Dual-Wavelength Polarimetric Analysis of the 16 May 2010 Oklahoma City Extreme Hailstorm , 2012 .

[103]  Alan Shapiro,et al.  Sensitivity of Real-Data Simulations of the 3 May 1999 Oklahoma City Tornadic Supercell and Associated Tornadoes to Multimoment Microphysics. Part I: Storm- and Tornado-Scale Numerical Forecasts , 2015 .

[104]  Jothiram Vivekanandan,et al.  Multiparameter Radar Modeling and Observations of Melting Ice , 1990 .

[105]  Jidong Gao,et al.  The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation , 2003 .

[106]  Matthew R. Kumjian,et al.  Principles and Applications of Dual-Polarization Weather Radar. Part III: Artifacts , 2013 .

[107]  Matthew R. Kumjian,et al.  Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications , 2013 .

[108]  Guifu Zhang,et al.  Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment , 2002 .

[109]  Eugenio Gorgucci,et al.  Evaluation of Attenuation Correction Methodology for Dual-Polarization Radars: Application to X-Band Systems , 2005 .

[110]  Joseph B. Klemp,et al.  A Study of the Tornadic Region within a Supercell Thunderstorm , 1983 .

[111]  A. Ryzhkov,et al.  Attenuation and Differential Attenuation of 5-cm-Wavelength Radiation in Melting Hail , 2011 .