Detection of Weak Electric Fields

Electric fields in natural waters present a wealth of sensory information. Bioelectric fields direct electrosensitive fishes to their prey, environmental fields provide important orientational cues, and the fields induced by the animals’ motion through the earth’s magnetic field offer oceanic species complete compass data. Particularly sensitive to electric fields are the marine sharks, skates, and rays, but the weakly electric fishes, the common catfishes, and several of the more primitive fishes are also known for their keen electric sense.

[1]  H S BURR Field theory in biology. , 1947, The Scientific monthly.

[2]  A. Kalmijn,et al.  Electric and magnetic field detection in elasmobranch fishes. , 1982, Science.

[3]  A. Kalmijn,et al.  The electric sense of sharks and rays. , 1971, The Journal of experimental biology.

[4]  H. Kleerekoper,et al.  Spike Potentials produced by the Sea Lamprey (Petromyzon marinus) in the Water surrounding the Head Region , 1956, Nature.

[5]  Edward S. Hodgson,et al.  Sensory biology of sharks, skates, and rays , 1978 .

[6]  Ad. J. Kalmijn,et al.  The Magnetic Behavior of Mud Bacteria , 1978 .

[7]  Transduction at electroreceptors: origins of sensitivity. , 1979 .

[8]  Albert Einstein,et al.  The Principle of Relativity , 2014 .

[9]  H. Burr Field Properties of the Developing Frog's Egg. , 1941, Proceedings of the National Academy of Sciences of the United States of America.

[10]  George Howard Parker,et al.  THE RESPONSES OF THE CATFISH, AMIURUS NEBULOSUS, TO METALLIC AND NON-METALLIC RODS , 1917 .

[11]  Elmer Julius Lund,et al.  Bioelectric fields and growth , 1947 .

[12]  John C. Montgomery Frequency response characteristics of primary and secondary neurons in the electrosensory system of the thornback ray , 1984 .

[13]  H. S. Burr,et al.  Bio-Electric Correlates of Development in Amblystoma * , 1937, The Yale journal of biology and medicine.

[14]  Ad. J. Kalmijn,et al.  The Detection of Electric Fields from Inanimate and Animate Sources Other Than Electric Organs , 1974 .

[15]  A. Einstein Zur Elektrodynamik bewegter Körper , 1905 .

[16]  C. I. Hovland,et al.  Bio-Electric Potential Gradients in the Chick * , 1937, The Yale journal of biology and medicine.

[17]  R W Murray Electroreceptor mechanisms: the relation of impulse frequency to stimulus strength and responses to pulsed stimuli in the ampullae of Lorenzini of elasmobranchs. , 1965, The Journal of physiology.

[18]  E. J. Lund Experimental control of organic polarity by the electric current. V. The nature of the control of organic polarity by the electric current , 1925 .

[19]  A. Mathews ELECTRICAL POLARITY IN THE HYDROIDS , 1903 .

[20]  K. E. Machin,et al.  Electric Receptors in a Non-electric Fish (Clarias) , 1963, Nature.

[21]  B Waltman,et al.  Electrical properties and fine structure of the ampullary canals of Lorenzini. , 1966, Acta physiologica Scandinavica. Supplementum.

[22]  H. Burr An electro‐dynamic theory of development suggested by studies of proliferation rates in the brain of Amblystoma , 1932 .

[23]  Klaus Schmidt-Koenig,et al.  Animal Orientation and Navigation , 1972 .

[24]  J. Phillips,et al.  Two magnetoreception pathways in a migratory salamander , 1986, Science.

[25]  R. Jungerman,et al.  Magnetic induction for the sensing of magnetic fields by animals--an analysis. , 1980, Journal of theoretical biology.

[26]  R. W. Murray,et al.  The response of the ampullae of Lorenzini of elasmobranchs to electrical stimulation. , 1962, The Journal of experimental biology.

[27]  H. P. Schwan,et al.  Interactions between electromagnetic fields and cells , 1985 .

[28]  A. Kalmijn,et al.  Bioelectric Fields in Sea Water and the Function of the Ampullae of Lorenzini in Elasmobranch Fishes , 1972 .

[29]  E. J. Lund Experimental control of organic polarity by the electric current. II. The normal electrical polarity of Obelia. A proof of its existence , 1922 .

[30]  H. W. Lissmann,et al.  Continuous Electrical Signals from the Tail of a Fish, Gymnarchus niloticus Cuv. , 1951, Nature.

[31]  M. S. Longuet-Higgins,et al.  The electrical field induced by ocean currents and waves, with applications to the method of towed electrodes , 1954 .

[32]  K. E. Machin,et al.  The Mode of Operation of the Electric Receptors in Gymnarchus Niloticus , 1960 .

[33]  A. Kalmijn,et al.  Electro-perception in Sharks and Rays , 1966, Nature.

[34]  R. Peters,et al.  FREQUENCY SELECTIVITY IN THE AMPULLARY SYSTEM OF AN ELASMOBRANCH FISH (SCYLIORHINUS CANICULA) , 1985 .

[35]  Kalmijn Aj Electromagnetic orientation: a relativistic approach. , 1988 .

[36]  M. Bennett,et al.  Mode of Operation of Ampullae of Lorenzini of the Skate, Raja , 1972, The Journal of general physiology.

[37]  A. P. Kraev,et al.  Grundlagen der Geoelektrik , 1957 .

[38]  H. Kleerekoper,et al.  THE ROLE OF THE GILL FILAMENT MUSCULATURE IN TELEOSTS , 1962 .

[39]  N. Pals,et al.  Orientation Reactions of the Dogfish, Scyliorhinus Canicula, To Local Electric Fields , 1981 .

[40]  C. L. Deelder On the Migration of the Elver (Anguilla vulgaris Turt.) at Sea , 1952 .

[41]  E. Knudsen Functional organization in electroreceptive midbrain of the catfish. , 1978, Journal of neurophysiology.

[42]  E. L. Brannon,et al.  Magnetic field detection in sockeye salmon , 1981 .

[43]  A. Kalmijn Experimental Evidence of Geomagnetic Orientation in Elasmobranch Fishes , 1978 .

[44]  William S. Von Arx,et al.  Introduction to Physical Oceanography , 1962 .

[45]  R. Northcutt,et al.  An electrosensory area in the telencephalon of the little skate, Raja erinacea , 1984, Brain Research.

[46]  J. Dowling,et al.  Membrane transduction mechanisms , 1979 .

[47]  A. Kalmijn,et al.  Biophysics of geomagnetic field detection , 1981 .

[48]  H. W. Lissmann Electric Location by Fishes , 1963 .

[49]  A. Einstein On the Electrodynamics of Moving Bodies , 2005 .

[50]  B. Söderström,et al.  A method for determination of low carbon monoxide concentration in blood. , 1966, Acta physiologica Scandinavica.

[51]  Timothy C. Tricas Bioelectric-Mediated Predation by Swell Sharks, Cephaloscyllium ventriosum , 1982 .

[52]  W. Wiltschko The influence of magnetic total intensity and inclination on directions preferred by migrating European robins (Erithacus rubecula) , 1972 .

[53]  M. Sanders Handbook of Sensory Physiology , 1975 .

[54]  Liana Bolis,et al.  Comparative physiology of sensory systems , 1984 .

[55]  M. Bennett,et al.  ELECTROLOCATION IN FISH * , 1971, Annals of the New York Academy of Sciences.

[56]  H. W. Lissmann On the Function and Evolution of Electric Organs in Fish , 1958 .

[57]  N. Weinberger,et al.  Submerged electrodes in an aquarium: Validation of a technique for remote sensing of behavior , 1971 .

[58]  J. Kirschvink,et al.  Geomagnetic field detection by yellowfin tuna , 1982 .

[59]  Bullock Th Processing of ampullary input in the brain: comparison of sensitivity and evoked responses among elasmobranch and siluriform fishes. , 1979 .

[60]  T H Bullock,et al.  Further analysis of sensory coding in electroreceptors of electric fish. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[61]  K. Schmidt-Koenig,et al.  Animal Migration, Navigation, and Homing , 1978 .

[62]  Michael Faraday,et al.  Experimental Researches in Electricity , 1880, Nature.