The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5

One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels.

[1]  J. Cha,et al.  GacA directly regulates expression of several virulence genes in Pseudomonas syringae pv. tabaci 11528. , 2012, Biochemical and biophysical research communications.

[2]  Bronwyn G. Butcher,et al.  An Extracytoplasmic Function Sigma Factor-Mediated Cell Surface Signaling System in Pseudomonas syringae pv. tomato DC3000 Regulates Gene Expression in Response to Heterologous Siderophores , 2011, Journal of bacteriology.

[3]  Bronwyn G. Butcher,et al.  Characterization of the Fur Regulon in Pseudomonas syringae pv. tomato DC3000 , 2011, Journal of bacteriology.

[4]  M. Rivera,et al.  Two distinct ferritin-like molecules in Pseudomonas aeruginosa: the product of the bfrA gene is a bacterial ferritin (FtnA) and not a bacterioferritin (Bfr). , 2011, Biochemistry.

[5]  Raymond Lo,et al.  Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes , 2010, Nucleic Acids Res..

[6]  C. Reimmann,et al.  Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species , 2011, BioMetals.

[7]  P. Lemanceau,et al.  TonB-dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5 , 2011, BioMetals.

[8]  S. Buchanan,et al.  TonB-dependent transporters: regulation, structure, and function. , 2010, Annual review of microbiology.

[9]  Jeff H. Chang,et al.  An improved, high-quality draft genome sequence of the Germination-Arrest Factor-producing Pseudomonas fluorescens WH6 , 2010, BMC Genomics.

[10]  Martin Ester,et al.  PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes , 2010, Bioinform..

[11]  Xiaole Kong,et al.  Chemistry and biology of siderophores. , 2010, Natural product reports.

[12]  H. Oyaizu,et al.  phrR-Like Gene praR of Azorhizobium caulinodans ORS571 Is Essential for Symbiosis with Sesbania rostrata and Is Involved in Expression of reb Genes , 2010, Applied and Environmental Microbiology.

[13]  Amanda G. Oglesby-Sherrouse,et al.  Characterization of a Heme-Regulated Non-Coding RNA Encoded by the prrF Locus of Pseudomonas aeruginosa , 2010, PloS one.

[14]  Karl A. Hassan,et al.  Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. , 2010, Environmental microbiology.

[15]  R. Fleischmann,et al.  Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation , 2010, BMC Microbiology.

[16]  M. Ishii,et al.  Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa. , 2009, Environmental microbiology.

[17]  Tomoko Suzuki,et al.  The Siderophore Pyoverdine of Pseudomonas syringae pv. tabaci 6605 Is an Intrinsic Virulence Factor in Host Tobacco Infection , 2009, Journal of bacteriology.

[18]  S. Cordwell,et al.  Comparative Transcriptional and Translational Analysis of Leptospiral Outer Membrane Protein Expression in Response to Temperature , 2009, PLoS neglected tropical diseases.

[19]  Masaru Tomita,et al.  Unbiased Quantitation of Escherichia coli Membrane Proteome Using Phase Transfer Surfactants* , 2009, Molecular & Cellular Proteomics.

[20]  Carrie L. Woodin,et al.  Binding of Pseudomonas aeruginosa apobacterioferritin-associated ferredoxin to bacterioferritin B promotes heme mediation of electron delivery and mobilization of core mineral iron. , 2009, Biochemistry.

[21]  É. Massé,et al.  Small RNA‐induced differential degradation of the polycistronic mRNA iscRSUA , 2009, The EMBO journal.

[22]  D. Rognan,et al.  Stereospecificity of the Siderophore Pyochelin Outer Membrane Transporters in Fluorescent Pseudomonads* , 2009, Journal of Biological Chemistry.

[23]  Georgios S. Vernikos,et al.  Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens , 2009, Genome Biology.

[24]  D. Merrell,et al.  Complex Role of Fur in Pathogenesis , 2022 .

[25]  Ming Yi,et al.  bioDBnet: the biological database network , 2009, Bioinform..

[26]  Peter D. Karp,et al.  EcoCyc: A comprehensive view of Escherichia coli biology , 2008, Nucleic Acids Res..

[27]  Liesbeth M. M. van Oeffelen,et al.  Iron uptake regulation in Pseudomonas aeruginosa , 2009, BioMetals.

[28]  C. Myers,et al.  Global transcriptional responses of Pseudomonas syringae DC3000 to changes in iron bioavailability in vitro , 2008, BMC Microbiology.

[29]  M. Bes,et al.  Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. , 2008, Environmental microbiology.

[30]  P. M. Mohan,et al.  A comparative analysis of metal transportomes from metabolically versatile Pseudomonas , 2008, BMC Research Notes.

[31]  E. Greenberg,et al.  The Influence of Iron on Pseudomonas aeruginosa Physiology , 2008, Journal of Biological Chemistry.

[32]  C. Myers,et al.  Characterization of the PvdS‐regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads , 2008, Molecular microbiology.

[33]  F. Valeriote,et al.  Isolation and Identification of Rhizoxin Analogs from Pseudomonas fluorescens Pf-5 by Using a Genomic Mining Strategy , 2008, Applied and Environmental Microbiology.

[34]  H. Nakaya,et al.  The Iron Stimulon of Xylella fastidiosa Includes Genes for Type IV Pilus and Colicin V-Like Bacteriocins , 2008, Journal of bacteriology.

[35]  C. Reimmann,et al.  Pseudomonas fluorescens CHA0 Produces Enantio-pyochelin, the Optical Antipode of the Pseudomonas aeruginosa Siderophore Pyochelin* , 2007, Journal of Biological Chemistry.

[36]  M. Marahiel,et al.  Siderophore-Based Iron Acquisition and Pathogen Control , 2007, Microbiology and Molecular Biology Reviews.

[37]  Tewes Tralau,et al.  Transcriptomic Analysis of the Sulfate Starvation Response of Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[38]  S. Andrews,et al.  EfeUOB (YcdNOB) is a tripartite, acid‐induced and CpxAR‐regulated, low‐pH Fe2+ transporter that is cryptic in Escherichia coli K‐12 but functional in E. coli O157:H7 , 2007, Molecular microbiology.

[39]  J. Ramos,et al.  Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida. , 2007, Environmental microbiology.

[40]  I. Paulsen,et al.  The Genomic Sequence of Pseudomonas fluorescens Pf-5: Insights Into Biological Control. , 2007, Phytopathology.

[41]  P. Wright,et al.  Translational and transcriptional analysis of Sulfolobus solfataricus P2 to provide insights into alcohol and ketone utilisation , 2007, Proteomics.

[42]  Peter Lindblad,et al.  An iTRAQ-based quantitative analysis to elaborate the proteomic response of Nostoc sp. PCC 7120 under N2 fixing conditions. , 2007, Journal of proteome research.

[43]  Rama Ranganathan,et al.  Signal transduction pathway of TonB-dependent transporters , 2007, Proceedings of the National Academy of Sciences.

[44]  Harald Gross,et al.  The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. , 2007, Chemistry & biology.

[45]  M. Vasil How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events , 2007, BioMetals.

[46]  J. Vohradský,et al.  The iron‐regulated transcriptome and proteome of Neisseria meningitidis serogroup C , 2006, Proteomics.

[47]  Gang Wu,et al.  Correlation of mRNA Expression and Protein Abundance Affected by Multiple Sequence Features Related to Translational Efficiency in Desulfovibrio vulgaris: A Quantitative Analysis , 2006, Genetics.

[48]  Alexander Scherl,et al.  Exploring glycopeptide-resistance in Staphylococcus aureus: a combined proteomics and transcriptomics approach for the identification of resistance-related markers , 2006, BMC Genomics.

[49]  Kelvin H Lee,et al.  Shotgun proteomics using the iTRAQ isobaric tags. , 2006, Briefings in functional genomics & proteomics.

[50]  I. Suzuki,et al.  The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. , 2006, Journal of experimental botany.

[51]  S. Gottesman,et al.  Effect of RyhB Small RNA on Global Iron Use in Escherichia coli , 2005, Journal of bacteriology.

[52]  É. Massé,et al.  Ironing out the problem: new mechanisms of iron homeostasis. , 2005, Trends in biochemical sciences.

[53]  Rekha Seshadri,et al.  Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5 , 2005, Nature Biotechnology.

[54]  J. Ramos,et al.  Role of iron and the TonB system in colonization of corn seeds and roots by Pseudomonas putida KT2440. , 2005, Environmental microbiology.

[55]  P. Delepelaire,et al.  Bacterial iron sources: from siderophores to hemophores. , 2004, Annual review of microbiology.

[56]  S. Gottesman,et al.  Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[57]  S. Beatson,et al.  FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. , 2004, Microbiology.

[58]  R. Fleischmann,et al.  Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays , 2004, Molecular microbiology.

[59]  M. Zala,et al.  Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA , 1998, European Journal of Plant Pathology.

[60]  J. Guinea,et al.  R-bodies inPseudomonas aeruginosa strain 44T1 , 1991, Antonie van Leeuwenhoek.

[61]  Ian T. Paulsen,et al.  TransportDB: a relational database of cellular membrane transport systems , 2004, Nucleic Acids Res..

[62]  R. Rappuoli,et al.  An anti‐repression Fur operator upstream of the promoter is required for iron‐mediated transcriptional autoregulation in Helicobacter pylori , 2003, Molecular microbiology.

[63]  S. Worgall,et al.  Transcriptome analysis of the Pseudomonas aeruginosa response to iron , 2003, Archives of Microbiology.

[64]  F. Lépine,et al.  rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. , 2003, Microbiology.

[65]  S. de Vries,et al.  Microbial ferric iron reductases. , 2003, FEMS microbiology reviews.

[66]  S. Andrews,et al.  Bacterial iron homeostasis. , 2003, FEMS microbiology reviews.

[67]  P. Kiley,et al.  The role of Fe-S proteins in sensing and regulation in bacteria. , 2003, Current opinion in microbiology.

[68]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[69]  M. Vasil,et al.  GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes , 2002, Molecular microbiology.

[70]  E. Greenberg,et al.  A component of innate immunity prevents bacterial biofilm development , 2002, Nature.

[71]  Jisen Dai,et al.  Ferrous ion autoxidation and its chelation in iron-loaded human liver HepG2 cells. , 2002, Free radical biology & medicine.

[72]  P. Kiley,et al.  IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[74]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[75]  E. Koonin,et al.  Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins , 2001, Genome Biology.

[76]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[77]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[78]  A. Wilks,et al.  Degradation of Heme in Gram-Negative Bacteria: the Product of the hemO Gene of Neisseriae Is a Heme Oxygenase , 2000, Journal of bacteriology.

[79]  C. Blumer,et al.  Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0. , 2000, Microbiology.

[80]  P Stothard,et al.  The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. , 2000, BioTechniques.

[81]  T. Härd,et al.  The solution structure of ribosomal protein L36 from Thermus thermophilus reveals a zinc-ribbon-like fold. , 2000, Journal of molecular biology.

[82]  R. Poole,et al.  Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. , 2000, Advances in microbial physiology.

[83]  M. Vasil,et al.  Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. , 2000, Microbiology.

[84]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[85]  V. de Lorenzo,et al.  Opening the Iron Box: Transcriptional Metalloregulation by the Fur Protein , 1999, Journal of bacteriology.

[86]  A. Sonenshein,et al.  Bacillus subtilis aconitase is an RNA-binding protein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[87]  D. Hassett,et al.  Bacterioferritin A Modulates Catalase A (KatA) Activity and Resistance to Hydrogen Peroxide in Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[88]  L. Reitzer,et al.  Physiological Characterization of Pseudomonas aeruginosa during Exotoxin A Synthesis: Glutamate, Iron Limitation, and Aconitase Activity , 1999, Journal of bacteriology.

[89]  C. Whistler,et al.  The Two-Component Regulators GacS and GacA Influence Accumulation of the Stationary-Phase Sigma Factor ςS and the Stress Response in Pseudomonas fluorescensPf-5 , 1998, Journal of bacteriology.

[90]  D. Crowley,et al.  Phytosiderophores decrease iron stress and pyoverdine production of Pseudomonas fluorescens PF-5 (pvd-inaZ) , 1998 .

[91]  Katrin Beyer,et al.  Systematic genomic screening and analysis of mRNA in untranslated regions and mRNA precursors: combining experimental and computational approaches , 1998, Bioinform..

[92]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[93]  L. Thöny‐meyer Biogenesis of respiratory cytochromes in bacteria , 1997, Microbiology and molecular biology reviews : MMBR.

[94]  M L Howell,et al.  An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa: fur mutants produce elevated alginate levels , 1997, Journal of bacteriology.

[95]  D. Hassett,et al.  Fumarase C activity is elevated in response to iron deprivation and in mucoid, alginate-producing Pseudomonas aeruginosa: cloning and characterization of fumC and purification of native fumC , 1997, Journal of bacteriology.

[96]  B. Polack,et al.  The Pseudomonas aeruginosa fumc and soda genes belong to an iron-responsive operon. , 1996, Biochemical and biophysical research communications.

[97]  G. Repetto,et al.  Changes in antioxidative activities induced by Fe (II) and Fe (III) in cultured vero cells , 1996, Archives of environmental contamination and toxicology.

[98]  S. Park,et al.  Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: role of the arcA, fnr, and soxR gene products , 1995, Journal of bacteriology.

[99]  V. Braun Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. , 1995, FEMS microbiology reviews.

[100]  S. Gould,et al.  PRODUCTION OF 2, 4-DIACETYLPHLOROGLUCINOL BY THE BIOCONTROL AGENT PSEUDOMONAS FLUORESCENS PF-5 , 1994 .

[101]  E. Hansen,et al.  Identification of a locus involved in the utilization of iron by Haemophilus influenzae , 1994, Infection and immunity.

[102]  D. Heruth,et al.  Characterization of genetic determinants for R body synthesis and assembly in Caedibacter taeniospiralis 47 and 116 , 1994, Journal of bacteriology.

[103]  Y. Fukumori,et al.  A novel terminal oxidase, cytochrome baa3 purified from aerobically grown Pseudomonas aeruginosa: it shows a clear difference between resting state and pulsed state. , 1992, Journal of biochemistry.

[104]  S. Lory,et al.  The filA (rpoF) gene of Pseudomonas aeruginosa encodes an alternative sigma factor required for flagellin synthesis , 1992, Molecular microbiology.

[105]  V. Braun,et al.  Iron transport systems of Serratia marcescens , 1992, Journal of bacteriology.

[106]  C. Andrés,et al.  Optimización de la producción de biotensioactivos por Pseudomonas aeruginosa 44T1 , 1991 .

[107]  J. Buyer,et al.  Current ReviewSiderophores in Microbial Interactions on Plant Surfaces , 1991 .

[108]  C. Mulligan,et al.  Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa , 1989, Applied and environmental microbiology.

[109]  H. Zalkin,et al.  Evidence that the iron-sulfur cluster of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase determines stability of the enzyme to degradation in vivo. , 1989, The Journal of biological chemistry.

[110]  I. Gibson,et al.  R-body-producing bacteria. , 1989, Microbiological reviews.

[111]  A. Chatterjee,et al.  Genetic organization and regulation of proteins associated with production of syringotoxin by Pseudomonas syringae pv. syringae , 1988, Journal of bacteriology.

[112]  D. Gross,et al.  Selection of fluorescent pseudomonads antagonistic to Erwinia carotovora and suppressive of potato seed piece decay , 1986 .

[113]  D. Gross Regulation of syringomycin synthesis in Pseudomonas syringae pv. syringae and defined conditions for its production. , 1985, The Journal of applied bacteriology.

[114]  R. Horne,et al.  The ultrastructure ofPseudomonas avenae II. Intracellular refractile (R-body) structure , 1983 .

[115]  A. P. Schwab,et al.  The chemistry of iron in soils and its availability to plants , 2016 .

[116]  J. Lalucat,et al.  Pseudomonas taeniospiralis sp. nov., an R-Body-Containing Hydrogen Bacterium , 1982 .

[117]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[118]  C. R. Howell Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. , 1980 .

[119]  C. R. Howell Control of rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. , 1979 .

[120]  J. Preer,et al.  Prelethal effects of killing action by stock 7 of Paramecium aurelia. , 1971, The Journal of experimental zoology.

[121]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .