Spectroscopic properties of heavily Ho 3+ -doped barium yttrium fluoride crystals
暂无分享,去创建一个
Mali Gong | Qiang Liu | Encai Ji | Hui Luo | Mingming Nie | Qiang Liu | M. Gong | Hui Luo | E. Ji | M. Nie | Yu-Xi Hu | Zhou-Guo Guan | Z. Guan | Yuzhou Hu
[1] Gunnar Arisholm,et al. A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator. , 2010, Optics express.
[2] P. Goldner,et al. Application of standard and modified Judd–Ofelt theories to a praseodymium‐doped fluorozirconate glass , 1996 .
[3] W. Fowler,et al. Relation between Absorption and Emission Probabilities in Luminescent Centers in Ionic Solids , 1962 .
[4] Arlete Cassanho,et al. High-pulse-energy 3.9-μm lasers in Ho:BYF , 2004, SPIE LASE.
[5] Taiju Tsuboi,et al. Optical spectroscopy of heavily Ho3+-doped BaY2F8 crystals , 2011 .
[6] R. Retoux,et al. Structure and raman spectroscopy of czochralski-grown barium yttrium and barium ytterbium fluorides crystals , 1993 .
[7] Leslie Brandon Shaw,et al. A 7-/spl mu/m praseodymium-based solid-state laser , 1996 .
[8] Claire F. Gmachl,et al. Mid-infrared quantum cascade lasers , 2012, Nature Photonics.
[9] W. Krupke. OPTICAL ABSORPTION AND FLUORESCENCE INTENSITIES IN SEVERAL RARE-EARTH-DOPED Y$sub 2$O$sub 3$ AND LaF$sub 3$ SINGLE CRYSTALS , 1966 .
[10] Jonathan T. Goldstein,et al. Progress in mid-IR Cr2+ and Fe2+ doped II-VI Materials and Lasers , 2011 .
[11] Valentin Gapontsev,et al. Progress in mid-IR Cr 2+ and Fe 2+ doped II-VI materials and lasers [Invited] , 2011 .
[12] D. Mccumber,et al. Einstein Relations Connecting Broadband Emission and Absorption Spectra , 1964 .
[13] M. Valerio,et al. Computer modelling of BaY2F8: defect structure, rare earth doping and optical behaviour , 2005 .
[15] S. Jackson. Towards high-power mid-infrared emission from a fibre laser , 2012, Nature Photonics.
[16] Yoji Kawamoto,et al. Judd–Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2-based glass , 2001 .
[17] B. Aull,et al. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .
[18] B. R. Reddy,et al. Site-selective energy upconversion in CaF 2 :Ho 3+ , 1997 .
[19] N. N. Petrishchev,et al. Medical applications of mid-IR lasers. Problems and prospects , 2010 .
[20] 夏海平,et al. Ho 3+ ∶LiYF 4 晶体的中红外发光特性 , 2013 .
[21] L. Gheorghe,et al. Spectroscopic properties of Ho3+ doped Sc2O3 transparent ceramic for laser materials , 2009 .
[22] Lloyd L. Chase,et al. Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/ , 1992 .
[23] Norman P. Barnes,et al. Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12 , 2006 .
[24] S A Payne,et al. 4.0-4.5-mum lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material. , 1999, Optics letters.
[25] Renata Reisfeld,et al. Judd-Ofelt parameters and chemical bonding☆ , 1983 .
[26] J. Axe. Radiative Transition Probabilities within 4fn Configurations: The Fluorescence Spectrum of Europium Ethylsulfate , 1963 .
[27] K. Rajnak,et al. Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ , 1968 .
[28] Norman P. Barnes,et al. Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4 , 1998 .
[29] David G. Lancaster,et al. A high power hybrid mid-IR laser source , 2010 .
[30] H. Eichler,et al. Spectroscopic and laser properties of Er3+-doped monoclinic BaY2F8 single crystals , 1990 .
[31] M. Tonelli,et al. Spectroscopy of Tm and Ho in KYF4 single crystals , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.
[32] B. Judd,et al. OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .
[33] G. S. Ofelt. Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .