Lp-error estimates for "shifted'' surface spline interpolation on Sobolev space

The accuracy of interpolation by a radial basis function φ is usually very satisfactory provided that the approximant f is reasonably smooth. However, for functions which have smoothness below a certain order associated with the basis function φ, no approximation power has yet been established. Hence, the purpose of this study is to discuss the Lp-approximation order (1 ≤ p ≤ ∞) of interpolation to functions in the Sobolev space Wpk(Ω) with k > max(0,d/2 - d/p). We are particularly interested in using the "shifted" surface spline, which actually includes the cases of the multiquadric and the surface spline. Moreover, we show that the accuracy of the interpolation method can be at least doubled when additional smoothness requirements and boundary conditions are met.

[1]  M. Buhmann New Developments in the Theory of Radial Basis Function Interpolation , 1993 .

[2]  J. Duchon Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^m$-splines , 1978 .

[3]  Robert Schaback,et al.  Approximation by radial basis functions with finitely many centers , 1996 .

[4]  W. Madych,et al.  Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation , 1992 .

[5]  A. Ron,et al.  Radial Basis Function Approximation: from Gridded Centres to Scattered Centres , 1995 .

[6]  A. Ron,et al.  On multivariate approximation by integer translates of a basis function , 1992 .

[7]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[8]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[9]  Jungho Yoon,et al.  Interpolation by Radial Basis Functions on Sobolev Space , 2001, J. Approx. Theory.

[10]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[11]  J. Yoon Approximation in Lp(Rd) from a space spanned by the scattered shifts of a radial basis function , 2001 .

[12]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[13]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[14]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[15]  J. Ward,et al.  Regarding thep-norms of radial basis interpolation matrices , 1994 .

[16]  A. Ron,et al.  Radial basis function approximation : from gridded centers to scattered centers , 1993 .

[17]  J. A. Salvato John wiley & sons. , 1994, Environmental science & technology.

[18]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[19]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[20]  M. Powell The uniform convergence of thin plate spline interpolation in two dimensions , 1994 .

[21]  W. Light,et al.  On Power Functions and Error Estimates for Radial Basis Function Interpolation , 1998 .

[22]  F. J. Narcowich,et al.  Norms of inverses and condition numbers for matrices associated with scattered data , 1991 .

[23]  Robert Schaback,et al.  Improved error bounds for scattered data interpolation by radial basis functions , 1999, Math. Comput..

[24]  M. Buhmann Multivariate cardinal interpolation with radial-basis functions , 1990 .

[25]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..