A Dirichlet boundary value problem for a generalized Ginzburg-Landau equation

Abstract We study the following generalized 1D Ginzburg-Landau equation on Ω = (0,∞) × (0, ∞): u t = (1 + iμ)u xx + (a 1 + ib 1 )|u| 2 u x + (a 2 + ib 2 )u 2 u x − (1 + iν)|u| 4 u with initial and Dirichlet boundary conditions u(x,0) = h(x),u(0,t) = Q(t). Under suitable conditions, we prove that there is a unique H1 solution that exists for all time.

[1]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[2]  C. K. Chu,et al.  Solitary waves induced by boundary motion , 1983 .

[3]  R. Deissler,et al.  The effect of nonlinear gradient terms on localized states near a weakly inverted bifurcation , 1990 .

[4]  Charles Bu The Ginzburg-Landau equation with nonzero Neumann boundary data , 1994 .

[5]  N. Paver,et al.  Multiple parton interactions and multijet events at collider and tevatron energies , 1984 .

[6]  D. Kaup Forced Integrable Systems , 1984 .

[7]  P. Holmes,et al.  Global existence theory for a generalized Ginzburg-Landau equation , 1992 .

[8]  Hongjun Gao,et al.  On the Initial-Value Problem for the Generalized Two-Dimensional Ginzburg–Landau Equation☆ , 1997 .

[9]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[10]  Bixiang Wang,et al.  Finite dimensional behaviour for the derivative Ginzburg-Landau equation in two spatial dimensions , 1995 .

[11]  J. Goldstein Semigroups of Linear Operators and Applications , 1985 .

[12]  G. Hongjun Exponential attractors for a generalized ginzburg-landau equation , 1995 .

[13]  Global Existence of Solutions to the Derivative 2D Ginzburg–Landau Equation , 2000 .

[14]  Charles Bu An initial-boundary value problem for the Ginzburg-Landau equation , 1992 .

[15]  Hongjun Gao,et al.  Asymptotics for the Generalized Two-Dimensional Ginzburg–Landau Equation , 2000 .

[16]  Philip Holmes,et al.  Fronts, domain walls and pulses in a generalized Ginzburg-Landau equation , 1995, Proceedings of the Edinburgh Mathematical Society.

[17]  Philip Holmes,et al.  On the Cauchy problem of a generalized Ginzburg-Landau equation , 1994 .

[18]  P. Holmes,et al.  Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation , 1993 .