A Lagrange-multiplier-based XFEM to solve pressure Poisson equations in problems with quasi-static interfaces

The XFEM (extended finite element method) has a lot of advantages over other numerical methods to resolve discontinuities across quasi-static interfaces due to the jump in fluidic parameters or surface tension. However, singularities corresponding to enriched degrees of freedom (DOFs) embedded in XFEM arise in the discrete pressure Poisson equations. In this paper, constraints on these DOFs are derived from the interfacial equilibrium condition and introduced in terms of stabilized Lagrange multipliers designed for non-boundary-fitted meshes to address this issue. Numerical results show that the weak and strong discontinuities in pressure with straight and circular interfaces are accurately reproduced by the constraints. Comparisons with the SUPG/PSPG (streamline upwind/pressure stabilizing Petrov-Galerkin) method without Lagrange multipliers validate the applicability and flexibility of the proposed constrained algorithm to model problems with quasi-static interfaces.

[1]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[2]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[3]  O. Zienkiewicz,et al.  A general algorithm for compressible and incompressible flow—Part I. the split, characteristic‐based scheme , 1995 .

[4]  Thomas-Peter Fries,et al.  The extended finite element method for two-phase and free-surface flows: A systematic study , 2011, J. Comput. Phys..

[5]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[6]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[7]  Eugenio Oñate,et al.  Advances in the simulation of multi‐fluid flows with the particle finite element method. Application to bubble dynamics , 2011 .

[8]  Thomas-Peter Fries,et al.  The intrinsic XFEM for two‐fluid flows , 2009 .

[9]  Nicolas Moës,et al.  A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .

[10]  A. Reusken,et al.  Nitsche’s Method for a Transport Problem in Two-phase Incompressible Flows , 2009 .

[11]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[12]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[13]  T. Belytschko,et al.  An enriched finite element method and level sets for axisymmetric two‐phase flow with surface tension , 2003 .

[14]  Ramon Codina,et al.  A general algorithm for compressible and incompressible flows. Part III: The semi‐implicit form , 1998 .

[15]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[16]  K. Bathe Finite Element Procedures , 1995 .

[17]  R. Codina Pressure Stability in Fractional Step Finite Element Methods for Incompressible Flows , 2001 .

[18]  Ramon Codina,et al.  A general algorithm for compressible and incompressible flow—Part II. tests on the explicit form , 1995 .

[19]  A. Reusken Analysis of an extended pressure finite element space for two-phase incompressible flows , 2008 .

[20]  Tae-Yeon Kim,et al.  A mortared finite element method for frictional contact on arbitrary interfaces , 2006 .

[21]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[22]  L. Quartapelle,et al.  Numerical solution of the incompressible Navier-Stokes equations , 1993, International series of numerical mathematics.

[23]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[24]  Tomohiro Sawada,et al.  High‐order gaussian quadrature in X‐FEM with the lagrange‐multiplier for fluid–structure coupling , 2010 .

[25]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[26]  T. Belytschko,et al.  An Extended Finite Element Method for Two-Phase Fluids , 2003 .

[27]  Tod A. Laursen,et al.  On methods for stabilizing constraints over enriched interfaces in elasticity , 2009 .

[28]  A. Smolianski Finite‐element/level‐set/operator‐splitting (FELSOS) approach for computing two‐fluid unsteady flows with free moving interfaces , 2005 .

[29]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .