On The Modal Effective Nonlinearity of A Class of Tapered-Cantilever Beams

The objective of this dissertation is to investigate the influence of i) higher-order nonlinearities, and ii) assumed mode discretization on the approximate modal effective nonlinearity associated with the flexural response of thin metallic cantilever beams of a constant thickness and a linearly-varying width. To this end, in the first part of this dissertation, a nonlinear model of an Euler-Bernoulli metallic cantilever beam with an arbitrarily variable cross-section is derived. Unlike the common literature wherein the Lagrangian is truncated using a fourth-order Taylor series; here the series is truncated at the eighth order to study the influence of higher-order nonlinearities on the modal effective nonlinearity of a given vibration mode. The influence of the cubic, quintic, and septic nonlinearities on the modal effective nonlinearity is then investigated. It is shown that, in general, quintic and septic nonlinearities have a negligible influence on the estimates of the effective nonlinearity and, therefore, can be neglected in any further analysis. In the second part, the dissertation investigates the validity and accuracy of using assumed modes methods to estimate the effective nonlinearities of the beam’s vibration modes. Since the linear eigenvalue problem associated with our problem is very hard to solve analytically for the exact mode shapes, an approximate set is assumed to discretize the partial differential equation governing the beam’s motion. To approximate the mode shapes, three methods are utilized: i) a crude approach, which directly utilizes the linear mode shapes of a prismatic cantilever beam, ii) a finite element approach wherein the mode shapes are obtained computationally in ANSYS, then fit into orthonormal polynomial curves while minimizing the least square error in the modal frequencies, and iii) a Rayleigh-Ritz approach which utilizes a set of orthonormal trial basis functions to construct the mode shapes as a linear combination of the trial functions used. Upon discretization, the modal frequencies and the effective nonlinearities of the first three vibration modes are compared for eight beams with different tapering along the width. It is shown that, even when the modal

[1]  Ali H. Nayfeh,et al.  Characterization of the mechanical behavior of an electrically actuated microbeam , 2002 .

[2]  Ephrahim Garcia,et al.  Beam Shape Optimization for Power Harvesting , 2010 .

[3]  W. W. King,et al.  Stability of Nonlinear Oscillations of an Elastic Rod , 1971 .

[4]  R. P. Goel Transverse vibrations of tapered beams , 1976 .

[5]  S. Senturia,et al.  Computer-aided generation of nonlinear reduced-order dynamic macromodels. II. Stress-stiffened case , 2000, Journal of Microelectromechanical Systems.

[6]  Ali H. Nayfeh,et al.  A Parametric Identification Technique for Single-Degree-of-Freedom Weakly Nonlinear Systems with Cubic Nonlinearities , 2003 .

[7]  A. P. Prudnikov,et al.  Integral transforms of generalized functions , 1989 .

[8]  유원재,et al.  Double tapered FRP beam for automotive suspension leaf spring = 자동차 현가장치에의 응용을 위한 이중 테이퍼를 갖는 섬유강화복합재 판스프링 , 1988 .

[9]  R Huiskes,et al.  On the modelling of long bones in structural analyses. , 1982, Journal of biomechanics.

[10]  Ali H. Nayfeh,et al.  A reduced-order model for electrically actuated microbeam-based MEMS , 2003 .

[11]  N. Jalili,et al.  Modeling, Nonlinear Dynamics, and Identification of a Piezoelectrically Actuated Microcantilever Sensor , 2008, IEEE/ASME Transactions on Mechatronics.

[12]  C. Ruff,et al.  Experimental testing of a DEXA‐derived curved beam model of the proximal femur , 1998, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[13]  C. Wang Vibration of a tapered cantilever of constant thickness and linearly tapered width , 2013 .

[14]  Jean-Claude Golinval,et al.  Microbeam pull-in voltage topology optimization including material deposition constraint , 2008 .

[15]  R. A. Scott,et al.  Non-planar, non-linear oscillations of a beam II. Free motions , 1976 .

[16]  D. N. Pawaskar,et al.  Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation , 2011 .

[17]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  M. R. Silva,et al.  Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. I. Equations of Motion , 1978 .

[19]  M. R. M. Crespo da Silva A comprehensive analysis of the dynamics of a helicopter rotor blade , 1998 .

[20]  Ali H. Nayfeh,et al.  Modeling and analysis of electrostatic MEMS filters , 2010 .

[21]  M. Porfiri,et al.  Electromechanical Model of Electrically Actuated Narrow Microbeams , 2006, Journal of Microelectromechanical Systems.

[22]  Walter Lacarbonara,et al.  Refined models of elastic beams undergoing large in-plane motions: Theory and experiment , 2006 .

[23]  G. Venkateswara Rao,et al.  Effect of longitudinal or inplane deformation and inertia on the large amplitude flexural vibrations of slender beams and thin plates , 1976 .

[24]  Adam M. Wickenheiser,et al.  Design Optimization of Linear and Non-Linear Cantilevered Energy Harvesters for Broadband Vibrations , 2011 .

[25]  Ali H. Nayfeh,et al.  Investigation of subcombination internal resonances in cantilever beams , 1998 .

[26]  Ali H. Nayfeh,et al.  On the Discretization of Distributed-Parameter Systems with Quadratic and Cubic Nonlinearities , 1997 .

[27]  A. H. Nayfeh,et al.  Towards a stable low-voltage torsional microscanner , 2008 .

[28]  S. Timoshenko,et al.  X. On the transverse vibrations of bars of uniform cross-section , 1922 .

[30]  Wenhua Zhang,et al.  Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor , 2002 .

[31]  B. Downs,et al.  Transverse Vibrations of Cantilever Beams Having Unequal Breadth and Depth Tapers , 1977 .

[32]  Ozge Ozdemir Ozgumus,et al.  Formulation for flutter and vibration analysis of a hingeless helicopter blade in hover: Part I , 2007 .

[33]  Mohammed F. Daqaq,et al.  Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters , 2011 .

[34]  R. E. Rossi,et al.  Free vibrations of beams of bilinearly varying thickness , 1996 .

[35]  Ali H. Nayfeh,et al.  Non-linear non-planar oscillations of a cantilever beam under lateral base excitations , 1990 .

[36]  Harrie A.C. Tilmans,et al.  Static and dynamic aspects of an air-gap capacitor , 1992 .

[37]  D. N. Pawaskar,et al.  Pull-In Dynamics of Variable-Width Electrostatic Microactuators , 2008 .

[38]  Earl H. Dowell,et al.  An experimental-theoretical correlation study of non-linear bending and torsion deformations of a cantilever beam☆ , 1977 .

[39]  A. H. Nayfeh,et al.  Nonlinear Resonances in a Flexible Cantilever Beam , 1994 .

[40]  Singiresu S. Rao Vibration of Continuous Systems , 2019 .

[41]  D. Caruntu Dynamic modal characteristics of transverse vibrations of cantilevers of parabolic thickness , 2009 .

[42]  Gesammelte Abhandlungen , 1906, Nature.

[43]  L. Meirovitch,et al.  Fundamentals of Vibrations , 2000 .

[44]  L. Meirovitch Principles and techniques of vibrations , 1996 .

[45]  B. Downs Reference frequencies for the validation of numerical solutions of transverse vibrations of non-uniform beams , 1978 .

[46]  Qiusheng Li,et al.  EXACT SOLUTIONS FOR FREE LONGITUDINAL VIBRATIONS OF NON-UNIFORM RODS , 2000 .

[47]  S.D. Senturia,et al.  Computer-aided generation of nonlinear reduced-order dynamic macromodels. I. Non-stress-stiffened case , 2000, Journal of Microelectromechanical Systems.

[48]  Amin Bibo,et al.  Energy harvesting under combined aerodynamic and base excitations , 2013 .

[49]  C. Wang,et al.  Exact Vibration Solutions for a Class of Nonuniform Beams , 2013 .

[50]  Ali H. Nayfeh,et al.  On the discretization of spatially continuous systems with quadratic and cubic nonlinearities , 1998 .

[51]  A. Nayfeh,et al.  On the Transfer of Energy between Widely Spaced Modes in Structures , 2003 .

[52]  Ali H. Nayfeh,et al.  Nonlinear flexural-flexural-torsional dynamics of metallic and composite beams , 1990 .

[53]  M. Dahleh,et al.  Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy , 1999 .

[54]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[55]  Ali H. Nayfeh,et al.  Nonlinear Responses of Buckled Beams to Subharmonic-Resonance Excitations , 2004 .

[56]  S. Naguleswaran,et al.  Vibration of an Euler-Bernoulli beam of constant depth and with linearly varying breadth , 1992 .

[57]  J. McBride,et al.  A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches , 2013 .

[58]  Mehmet Cem Ece,et al.  Vibration of a variable cross-section beam , 2007 .

[59]  Miko Elwenspoek,et al.  Micro resonant force gauges , 1992 .

[60]  Howard Smith U‐99 uninhabited tactical aircraft preliminary structural design , 2001 .

[61]  A. Nayfeh,et al.  COUPLING BETWEEN HIGH-FREQUENCY MODES AND A LOW-FREQUENCY MODE: THEORY AND EXPERIMENT , 1993 .

[62]  A. H. Nayfeh,et al.  An Experimental Investigation of Multimode Responses in a Cantilever Beam , 1997 .

[63]  Ali H. Nayfeh,et al.  Three-dimensional nonlinear vibrations of composite beams — I. Equations of motion , 1990 .

[64]  Gangan Prathap,et al.  Galerkin finite element method for non-linear beam vibrations , 1980 .

[65]  P. Varoto,et al.  Effects of Variations in Nonlinear Damping Coefficients on the Parametric Vibration of a Cantilever Beam with a Lumped Mass , 2008 .

[66]  P. Frank Pai,et al.  Large-deformation tests and total-Lagrangian finite-element analyses of flexible beams , 2000 .

[67]  M. Younis,et al.  A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation , 2003 .

[68]  Satya N. Atluri,et al.  Nonlinear Vibrations of a Hinged Beam Including Nonlinear Inertia Effects , 1973 .

[69]  Dumitru I. Caruntu,et al.  Classical Jacobi polynomials, closed-form solutions for transverse vibrations , 2007 .

[70]  Jonathan E. Cooper,et al.  a Combined Modal/finite Element Analysis Technique for the Dynamic Response of a Non-Linear Beam to Harmonic Excitation , 2001 .

[71]  Clive L. Dym,et al.  Energy and Finite Element Methods In Structural Mechanics : SI Units , 2017 .

[72]  M. Daqaq,et al.  On estimating the effective nonlinearity of structural modes using approximate modal shapes , 2014 .

[73]  Ali H. Nayfeh,et al.  Modal interactions in contact-mode atomic force microscopes , 2008 .

[74]  M. R. Silva,et al.  Out-of-plane vibrations of a beam including non-linear inertia and non-linear curvature effects , 1978 .

[75]  A. Nayfeh,et al.  Modeling and design of variable-geometry electrostatic microactuators , 2005 .

[76]  Khaled A. Alhazza,et al.  Non-linear vibrations of cantilever beams with feedback delays , 2008 .

[77]  D A Nagel,et al.  An extended structural analysis of long bones--application to the human tibia. , 1976, Journal of biomechanics.

[78]  Vimal Singh,et al.  Perturbation methods , 1991 .

[79]  Abdul Wasy,et al.  Finite Element Simulation of Simple Bending Problem and Code Development in C , 2013 .

[80]  S. Naguleswaran THE VIBRATION OF A “COMPLETE” EULER-BERNOULLI BEAM OF CONSTANT DEPTH AND BREADTH PROPORTIONAL TO AXIAL CO-ORDINATE RAISED TO A POSITIVE EXPONENTS , 1995 .

[81]  U. Schmid,et al.  Rigorous analytical analysis of resonant Euler-Bernoulli beams with constant thickness and polynomial width , 2014, 2014 IEEE International Ultrasonics Symposium.

[82]  S. Naguleswaran,et al.  A Direct Solution for the Transverse Vibration of Euler-Bernoulli Wedge and Cone Beams , 1994 .

[83]  Mahmood Tabaddor,et al.  Influence of nonlinear boundary conditions on the single-mode response of a cantilever beam , 2000 .

[84]  E. Pinney Vibration Modes of Tapered Beams , 1947 .

[85]  C. Ruff,et al.  Curved beam model of the proximal femur for estimating stress using dual‐energy x‐ray absorptiometry derived structural geometry , 1996, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[86]  M. Younis,et al.  A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping , 2004 .

[87]  A. Nayfeh,et al.  Linear and Nonlinear Structural Mechanics , 2002 .

[88]  Barton C. Prorok,et al.  Tailoring Beam Mechanics Towards Enhancing Detection of Hazardous Biological Species , 2007 .

[89]  Khaled A. Alhazza,et al.  On primary resonances of weakly nonlinear delay systems with cubic nonlinearities , 2011 .

[90]  Jens Wittenburg,et al.  Analytical Methods in Mechanical System Dynamics , 1984 .

[91]  Dan Haronian Maximizing microelectromechanical sensor and actuator sensitivity by optimizing geometry , 1995 .

[92]  Hans Wagner,et al.  Large-Amplitude Free Vibrations of a Beam , 1965 .

[93]  Z. Gürdal,et al.  Optimal design of an electrostatically actuated microbeam for maximum pull-in voltage , 2005 .

[94]  Serge Abrate,et al.  Vibration of non-uniform rods and beams , 1995 .

[95]  Liviu Librescu,et al.  Dynamic response of elastically tailored adaptive cantilevers of nonuniform cross section exposed to blast pressure pulses , 2001 .

[96]  Kok-Meng Lee,et al.  A three-dimensional curvature-based beam model for measuring mechanical properties on an automated bone testing system , 2012, 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[97]  A. Datta,et al.  An analysis of free undamped vibration of beams of varying cross-section , 1996 .

[98]  A. Pielorz,et al.  Non-Linear Vibration of a Cantilever Beam of Variable Cross-Section , 1986 .

[99]  D. Caruntu On Nonlinear Vibration of Nonuniform Beam with Rectangular Cross-Section and Parabolic Thickness Variation , 2000 .

[100]  C. L. Zaretzky,et al.  Experimental Investigation of Non-Linear Modal Coupling in the Response of Cantilever Beams , 1994 .

[101]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .

[102]  Paul Woafo,et al.  Analysis of an electromechanical energy harvester system with geometric and ferroresonant nonlinearities , 2014 .

[103]  Mohammed F. Daqaq,et al.  Electromechanical Modeling and Normal Form Analysis of an Aeroelastic Micro-Power Generator , 2011 .

[104]  Bumkyoo Choi,et al.  Improved analysis of microbeams under mechanical and electrostatic loads , 1997 .

[105]  G A Arangio,et al.  An application of beam theory to determine the stress and deformation of long bones. , 1989, Journal of biomechanics.

[106]  S. Timoshenko History of strength of materials , 1953 .

[107]  H. Tilmans,et al.  Electrostatically driven vacuum-encapsulated polysilicon resonators part II. theory and performance , 1994 .

[108]  Balakumar Balachandran,et al.  Experimental Verification of the Importance of The Nonlinear Curvature in the Response of a Cantilever Beam , 1994 .

[109]  H. H. Mabie,et al.  Transverse Vibrations of Tapered Cantilever Beams with End Support , 1968 .

[110]  Ali H. Nayfeh,et al.  Dynamics of an electrically actuated resonant microsensor , 2003, Proceedings International Conference on MEMS, NANO and Smart Systems.

[111]  Walter Lacarbonara,et al.  Dynamic response of arch bridges traversed by high-speed trains , 2007 .

[112]  Ali H. Nayfeh,et al.  Experimental Validation of Reduction Methods for Nonlinear Vibrations of Distributed-Parameter Systems: Analysis of a Buckled Beam , 1998 .

[113]  Pramod Malatkar,et al.  Nonlinear Vibrations of Cantilever Beams and Plates , 2003 .

[114]  Samir A. Emam A Theoretical and Experimental Study of Nonlinear Dynamics of Buckled Beams , 2002 .

[115]  M. Cannell,et al.  Structural analysis of tree trunks and branches: tapered cantilever beams subject to large deflections under complex loading. , 1987, Tree physiology.

[116]  Chongdu Cho,et al.  Deflection, Frequency, and Stress Characteristics of Rectangular, Triangular, and Step Profile Microcantilevers for Biosensors , 2009, Sensors.

[117]  C. Mei,et al.  A Finite Element Method for Nonlinear Forced Vibrations of Beams , 1985 .

[118]  H. N. Arafat,et al.  Nonlinear Response of Cantilever Beams , 1999 .

[119]  M. Taha,et al.  Mathematical Model for Vibrations of Non-Uniform Flexural Beams , 2008 .