Optimal approximation with exponential sums by a maximum likelihood modification of Prony’s method

We consider a modification of Prony’s method to solve the problem of best approximation of a given data vector by a vector of equidistant samples of an exponential sum in the 2-norm. We survey the derivation of the corresponding non-convex minimization problem that needs to be solved and give its interpretation as a maximum likelihood method. We investigate numerical iteration schemes to solve this problem and give a summary of different numerical approaches. With the help of an explicitly derived Jacobian matrix, we review the Levenberg-Marquardt algorithm which is a regularized Gauss-Newton method and a new iterated gradient method (IGRA). We compare this approach with the iterative quadratic maximum likelihood (IQML). We propose two further iteration schemes based on simultaneous minimization (SIMI) approach. While being derived from a different model, the scheme SIMI-I appears to be equivalent to the Gradient Condition Reweighted Algorithm (GRA) by Osborne and Smyth. The second scheme SIMI-2 is more stable with regard to the choice of the initial vector. For parameter identification, we recommend a pre-filtering method to reduce the noise variance. We show that all considered iteration methods converge in numerical experiments.

[1]  Daniel Potts,et al.  Nonlinear approximation by sums of nonincreasing exponentials , 2011 .

[2]  D. Potts,et al.  Parameter estimation for nonincreasing exponential sums by Prony-like methods , 2013 .

[3]  Mosuk Chow,et al.  An efficient algorithm for estimating the parameters of superimposed exponential signals , 2003 .

[4]  G. Plonka,et al.  Prony methods for recovery of structured functions , 2014 .

[5]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[6]  Ivan Markovsky,et al.  Software for weighted structured low-rank approximation , 2014, J. Comput. Appl. Math..

[7]  Dietrich Braess,et al.  On the efficient computation of high-dimensional integrals and the approximation by exponential sums , 2009 .

[8]  Ramdas Kumaresan,et al.  An algorithm for pole-zero modeling and spectral analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..

[9]  G. Beylkin,et al.  On approximation of functions by exponential sums , 2005 .

[10]  José Antonio de la O. Serna,et al.  Synchrophasor Estimation Using Prony's Method , 2013, IEEE Transactions on Instrumentation and Measurement.

[11]  G. Beylkin,et al.  Approximation by exponential sums revisited , 2010 .

[12]  Maarten V. de Hoop,et al.  Sparse approximation of functions using sums of exponentials and AAK theory , 2011, J. Approx. Theory.

[13]  Fredrik Andersson,et al.  Fixed-point algorithms for frequency estimation and structured low rank approximation , 2016, Applied and Computational Harmonic Analysis.

[14]  Ivan Markovsky,et al.  Low Rank Approximation - Algorithms, Implementation, Applications , 2018, Communications and Control Engineering.

[15]  Michael-Ralf Skrzipek Signal recovery by discrete approximation and a Prony-like method , 2017, J. Comput. Appl. Math..

[16]  M. R. Osborne,et al.  On the consistency of Prony's method and related algorithms , 1992 .

[17]  Gabriele Steidl,et al.  Numerical Fourier Analysis , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[18]  Martin Hanke,et al.  One Shot Inverse Scattering via Rational Approximation , 2012, SIAM J. Imaging Sci..

[19]  Tapan K. Sarkar,et al.  On the total least squares linear prediction method for frequency estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[20]  Thierry Blu,et al.  Extrapolation and Interpolation) , 2022 .

[21]  G. Plonka,et al.  Application of the AAK theory for sparse approximation of exponential sums , 2016, 1609.09603.

[22]  M. R. Osborne Some Special Nonlinear Least Squares Problems , 1975 .

[23]  Ralph Otto Schmidt,et al.  A signal subspace approach to multiple emitter location and spectral estimation , 1981 .

[24]  Ivan Markovsky,et al.  Variable projection for affinely structured low-rank approximation in weighted 2-norms , 2014, J. Comput. Appl. Math..

[25]  Zafer Dogan,et al.  Reconstruction of Finite Rate of Innovation Signals with Model-Fitting Approach , 2015, IEEE Transactions on Signal Processing.

[26]  E.A. Feilat Prony analysis technique for estimation of the mean curve of lightning impulses , 2006, IEEE Transactions on Power Delivery.

[27]  Hongwei Li,et al.  An efficient algorithm for estimating the parameters of superimposed exponential signals in multiplicative and additive noise , 2013, Int. J. Appl. Math. Comput. Sci..

[28]  Gordon K. Smyth,et al.  A Modified Prony Algorithm for Fitting Functions Defined by Difference Equations , 1991, SIAM J. Sci. Comput..

[29]  M. Kreĭn,et al.  ANALYTIC PROPERTIES OF SCHMIDT PAIRS FOR A HANKEL OPERATOR AND THE GENERALIZED SCHUR-TAKAGI PROBLEM , 1971 .

[30]  C. Dzienis,et al.  Parameter Estimation in Electrical Power Systems Using Prony's Method , 2015 .

[31]  G. Plonka,et al.  Sparse Deconvolution Methods for Ultrasonic NDT , 2012 .

[32]  Charles W. Therrien,et al.  An iterative Prony method for ARMA signal modeling , 1995, IEEE Trans. Signal Process..

[33]  Gerlind Plonka,et al.  A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators , 2013 .

[34]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[35]  Jian Li,et al.  Comparative study of IQML and MODE direction-of-arrival estimators , 1998, IEEE Trans. Signal Process..

[36]  Gordon K. Smyth,et al.  A Modified Prony Algorithm for Exponential Function Fitting , 1995, SIAM J. Sci. Comput..

[37]  Gene H. Golub,et al.  The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.

[38]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[39]  Ivan Markovsky,et al.  Factorization Approach to Structured Low-Rank Approximation with Applications , 2014, SIAM J. Matrix Anal. Appl..