Point algebras for temporal reasoning: Algorithms and complexity

We investigate the computational complexity of temporal reasoning in different time models such as totally-ordered, partially-ordered and branching time. Our main result concerns the satisfiability problem for point algebras and point algebras extended with disjunctions--for these problems, we identify all tractable subclasses. We also provide a number of additional results; for instance, we present a new time model suitable for reasoning about systems with a bounded number of unsynchronized clocks, we investigate connections with spatial reasoning and we present improved algorithms for deciding satisfiability of the tractable point algebras.

[1]  Glynn Winskel,et al.  An Introduction to Event Structures , 1989 .

[2]  Jai Srinivasan,et al.  Branching time temporal logic , 1988, REX Workshop.

[3]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[4]  Frank D. Anger,et al.  Using Constraint Propagation to Reason about Unsynchronized Clocks , 1998, Constraints.

[5]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[6]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[7]  Mark S. Boddy,et al.  Reasoning About Partially Ordered Events , 1988, Artificial Intelligence.

[8]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[9]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[10]  Leslie Lamport,et al.  The mutual exclusion problem: part I—a theory of interprocess communication , 1986, JACM.

[11]  Christer Bäckström,et al.  A Linear-Programming Approach to Temporal Reasoning , 1996, AAAI/IAAI, Vol. 2.

[12]  Johan de Kleer,et al.  Readings in qualitative reasoning about physical systems , 1990 .

[13]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[14]  Kenneth L. McMillan,et al.  Symbolic model checking: an approach to the state explosion problem , 1992 .

[15]  Peter Jonsson,et al.  Towards a Complete Classification of Tractability in Point Algebras for Nonlinear Time , 1999, CP.

[16]  Marcus Bjäreland,et al.  Reasoning about Action in Polynomial Time , 1997, IJCAI.

[17]  M. Yannakakis The Complexity of the Partial Order Dimension Problem , 1982 .

[18]  Jochen Renz,et al.  Maximal Tractable Fragments of the Region Connection Calculus: A Complete Analysis , 1999, IJCAI.

[19]  Frank D. Anger,et al.  Lattice structure of temporal interval relations , 2004, Applied Intelligence.

[20]  Sara Baase,et al.  Computer algorithms - introduction to design and analysis (2 ed.) , 1988 .

[21]  O. Ore Theory of Graphs , 1962 .

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  Allen Van Gelder,et al.  Computer Algorithms: Introduction to Design and Analysis , 1978 .

[24]  Peter Jonsson,et al.  Disjunctive Temporal Reasoning in Partially Ordered Models of Time , 2000, AAAI/IAAI.

[25]  D. McDermott A Temporal Logic for Reasoning About Processes and Plans , 1982, Cogn. Sci..

[26]  Marcus Bjäreland,et al.  Expressive Reasoning about Action in Nondeterministic Polynomial Time , 1999, IJCAI.

[27]  Frank D. Anger,et al.  On Lamport's interprocessor communication model , 1989, TOPL.

[28]  Bernhard Nebel,et al.  On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..

[29]  Christer Bäckström,et al.  A Unifying Approach to Temporal Constraint Reasoning , 1998, Artif. Intell..

[30]  Peter Jonsson,et al.  Refinements and Independence: A Simple Method for Identifying Tractable Disjunctive Constraints , 2000, CP.

[31]  Leslie Lamport,et al.  Time, clocks, and the ordering of events in a distributed system , 1978, CACM.

[32]  Manolis Koubarakis,et al.  Tractable disjunctions of linear constraints: basic results and applications to temporal reasoning , 2001, Theor. Comput. Sci..

[33]  Peter Jeavons,et al.  Building tractable disjunctive constraints , 2000, J. ACM.

[34]  Grzegorz Rozenberg,et al.  Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency , 1988, Lecture Notes in Computer Science.

[35]  Peter Jeavons,et al.  Reasoning about temporal relations: The tractable subalgebras of Allen's interval algebra , 2003, JACM.

[36]  Robin Hirsch,et al.  Expressive Power and Complexity in Algebraic Logic , 1997, J. Log. Comput..

[37]  Mathias Broxvall The Point Algebra for Branching Time Revisited , 2001, KI/ÖGAI.

[38]  Peter Jonsson,et al.  Disjunctions, independence, refinements , 2002, Artif. Intell..

[39]  Manolis Koubarakis,et al.  Tractable Disjunctions of Linear Constraints , 1996, CP.

[40]  Ivo Düntsch,et al.  Relations Algebras in Qualitative Spatial Reasoning , 1999, Fundam. Informaticae.

[41]  Christer Bäckström,et al.  Computational Complexity of Relating Time Points with Intervals , 1999, Artif. Intell..

[42]  Jochen Renz,et al.  A Spatial Odyssey of the Interval Algebra: 1. Directed Intervals , 2001, IJCAI.

[43]  Peter C. Fishburn,et al.  Partial orders of dimension 2 , 1972, Networks.