Multiobjective Genetic Algorithms for the Optimisation of Wastewater Treatment Processes

The combination of multiobjective genetic algorithms with wastewater treatment plant (WWTP) models provides an efficient framework for the evaluation, optimisation and comparison of WWTP control laws. This chapter presents a methodology developed for this efficient combination. Existing models and simulation software are used. They are combined with NSGA-II, a multiobjective genetic algorithm capable of finding the best tradeoffs (Pareto front) among multiple opposed objectives. Long term evaluations of the optimized solutions are proposed to check their robustness. An application of the methodology on the Benchmark Simulation Model 1 is presented and illustrates the benefits of the methodology.

[1]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[2]  Cyrille Lemoine,et al.  Optimisation of aeration for activated sludge treatment with simultaneous nitrification denitrification. , 2008, Water science and technology : a journal of the International Association on Water Pollution Research.

[3]  Benoît Chachuat,et al.  Long-term optimal aeration strategies for small-size alternating activated sludge treatment plants , 2005 .

[4]  Patrick M. Reed,et al.  Striking the Balance: Long-Term Groundwater Monitoring Design for Conflicting Objectives , 2004 .

[5]  L. D. Whitley A free lunch proof for Gray versus Binary encodings , 1999 .

[6]  W. Verstraete,et al.  Selection of one-dimensional sedimentation: models for on-line use , 1995 .

[7]  J. B. Copp,et al.  Benchmark Simulation Model No 2: finalisation of plant layout and default control strategy. , 2010, Water science and technology : a journal of the International Association on Water Pollution Research.

[8]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[9]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[10]  John W. Nicklow,et al.  Multi-objective automatic calibration of SWAT using NSGA-II , 2007 .

[11]  Kishalay Mitra,et al.  Optimized species growth in epoxy polymerization with real-coded NSGA-II , 2005 .

[12]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[13]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[14]  Colin R. Reeves,et al.  Using Genetic Algorithms with Small Populations , 1993, ICGA.

[15]  G. J. Kynch A theory of sedimentation , 1952 .

[16]  W. Gujer,et al.  Activated sludge model No. 3 , 1995 .

[17]  Saziye Balku,et al.  Dynamics of an activated sludge process with nitrification and denitrification: Start-up simulation and optimization using evolutionary algorithm , 2006, Comput. Chem. Eng..

[18]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[19]  Ulf Jeppsson,et al.  The COST benchmark simulation model—current state and future perspective , 2004 .

[20]  Evangelos Triantaphyllou,et al.  Multi-criteria Decision Making Methods: A Comparative Study , 2000 .

[21]  Gustaf Olsson,et al.  Instrumentation, Control and Automation in Wastewater Systems , 2015 .

[22]  L. Darrell Whitley,et al.  Transforming the search space with Gray coding , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[23]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[24]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[25]  Efstratios N. Pistikopoulos,et al.  Recent advances in optimization-based simultaneous process and control design , 2004, Comput. Chem. Eng..

[26]  Stefan Turek,et al.  Novel Simulation Approaches for Cyclic Steady-state Fixed-bed Processes Exhibiting Sharp Fronts and Shocks , 2005 .

[27]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[28]  Allen Hazen,et al.  Closure of "On Sedimentation" , 1904 .

[29]  Mogens Henze,et al.  Activated Sludge Model No.2d, ASM2D , 1999 .

[30]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[31]  U Jeppsson,et al.  Impact of reactive settler models on simulated WWTP performance. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[32]  P A Vanrolleghem,et al.  Towards a common benchmark for long-term process control and monitoring performance evaluation. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[33]  Sylvie Gillot,et al.  The COST Simulation Benchmark: Description and Simulator Manual , 2001 .

[34]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[35]  D Vrecko,et al.  Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[36]  U Jeppsson,et al.  WWTP dynamic disturbance modelling--an essential module for long-term benchmarking development. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[37]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[38]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[39]  Alejandro Rivas,et al.  Model-based optimisation of Wastewater Treatment Plants design , 2008, Environ. Model. Softw..

[40]  B. Holenda,et al.  Aeration optimization of a wastewater treatment plant using genetic algorithm , 2007 .

[41]  K. Essemiani,et al.  CFD modelling of sludge sedimentation in secondary clarifiers , 2006 .

[42]  Julio R. Banga,et al.  Integrated nonlinear optimization of bioprocesses via linear programming , 2003 .

[43]  P A Vanrolleghem,et al.  Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[44]  M. A. Latifi,et al.  Optimal operation of alternating activated sludge processes , 2005 .

[45]  I. Takács A dynamic model of the clarification-thickening process , 1991 .

[46]  Larry J. Eshelman,et al.  Biases in the Crossover Landscape , 1989, ICGA.