A crack along the interface of a circular inclusion embedded in an infinite solid

Abstract The two-dimensional problem of an arc shaped crack lying along the interface of a circular elastic inclusion embedded in an infinite matrix with different elastic constants is considered. Based on the complex variable method of Muskhelishvili, closed-form solutions for the stresses and the displacements around the crack are obtained when general biaxial loads are applied at infinity. These solutions are then combined with A.A. Griffith's virtual work argument to give a criterion of crack extension, namely the de-bonding of the interface. The critical applied loads are expressed explicitly in terms of a function of the inclusion radius and the central angle subtended by the crack arc. In the case of simple tension the critical load is inversely proportional to the square-root of the inclusion radius. By analyzing the variation of the cleavage stress near the crack tip, the deviation of the crack into the matrix is discussed. The case of uniaxial tension is worked out in detail.