Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes

The accurate description and robust simulation, at relatively low cost, of global quantities (e.g. number density or volume fraction) as well as the size distribution of a population of fine particles in a carrier fluid is still a major challenge for many applications. For this purpose, two types of methods are investigated for solving the population balance equation with aggregation, continuous particle size change (growth and size reduction), and nucleation: the extended quadrature method of moments (EQMOM) based on the work of Yuan et al. 52 and a hybrid method (TSM) between the sectional and moment methods, considering two moments per section based on the work of Laurent et al. 30. For both methods, the closure employs a continuous reconstruction of the number density function of the particles from its moments, thus allowing evaluation of all the unclosed terms in the moment equations, including the negative flux due to the disappearance of particles. Here, new robust and efficient algorithms are developed for this reconstruction step and two kinds of reconstruction are tested for each method. Moreover, robust and accurate numerical methods are developed, ensuring the realizability of the moments. The robustness is ensured with efficient and tractable algorithms despite the numerous couplings and various algebraic constraints thanks to a tailored overall strategy. EQMOM and TSM are compared to a sectional method for various simple but relevant test cases, showing their ability to describe accurately the fine-particle population with a much lower number of variables. These results demonstrate the efficiency of the modeling and numerical choices, and their potential for the simulation of real-world applications.

[1]  Tiziano Faravelli,et al.  Modeling soot formation in premixed flames using an Extended Conditional Quadrature Method of Moments , 2015 .

[2]  Marc Massot,et al.  Eulerian multi-fluid models for the simulation of dynamics and coalescence of particles in solid propellant combustion , 2013, J. Comput. Phys..

[3]  Marc Massot,et al.  Size-velocity correlations in hybrid high order moment/multi-fluid methods for polydisperse evaporating sprays: Modeling and numerical issues , 2013, J. Comput. Phys..

[4]  Marc Massot,et al.  Numerical simulation of spray coalescence in an Eulerian framework: Direct quadrature method of moments and multi-fluid method , 2007, J. Comput. Phys..

[5]  Alberto Passalacqua,et al.  An extended quadrature‐based mass‐velocity moment model for polydisperse bubbly flows , 2014 .

[6]  R. Fox,et al.  Modeling of Fine-Particle Formation in Turbulent Flames , 2016 .

[7]  Marc Massot,et al.  A Robust Moment Method for Evaluation of the Disappearance Rate of Evaporating Sprays , 2010, SIAM J. Appl. Math..

[8]  Rodney O. Fox,et al.  Simulation of fine particle formation by precipitation using computational fluid dynamics , 2000 .

[9]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[10]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[11]  Heeseok Koo,et al.  Large-eddy simulation modeling of turbulent flame synthesis of titania nanoparticles using a bivariate particle description , 2014 .

[12]  J. Seinfeld,et al.  Sectional representations for simulating aerosol dynamics , 1980 .

[13]  Daniele Marchisio,et al.  Solution of population balance equations using the direct quadrature method of moments , 2005 .

[14]  H. Pitsch,et al.  Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model , 2009 .

[15]  Rodney O. Fox,et al.  Application of in situ adaptive tabulation to CFD simulation of nano-particle formation by reactive precipitation , 2003 .

[16]  Zhi Jian Wang,et al.  Realizable high-order finite-volume schemes for quadrature-based moment methods applied to diffusion population balance equations , 2013, J. Comput. Phys..

[17]  R. D. Vigil,et al.  Quadrature method of moments for aggregation-breakage processes. , 2003, Journal of colloid and interface science.

[18]  Roy G. Gordon,et al.  Error Bounds in Equilibrium Statistical Mechanics , 1968 .

[19]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[20]  J. Wheeler,et al.  Modified moments and Gaussian quadratures , 1974 .

[21]  Stefan Rolewicz,et al.  On a problem of moments , 1968 .

[22]  Stefan Heinrich,et al.  Improved accuracy and convergence of discretized population balance for aggregation: The cell average technique , 2006 .

[23]  Marc Massot,et al.  High Order Moment Model for Polydisperse Evaporating Sprays towards Interfacial Geometry Description , 2016, SIAM J. Appl. Math..

[24]  F. Laurent,et al.  Eulerian multi-fluid modeling for the numerical simulation of coalescence in polydisperse dense liquid sprays , 2004 .

[25]  C. Yuan,et al.  Conditional quadrature method of moments for kinetic equations , 2011, J. Comput. Phys..

[26]  R. Gordon Error Bounds in Spectroscopy and Nonequilibrium Statistical Mechanics , 1968 .

[27]  Frédérique Laurent,et al.  Two-size moment multi-fluid model: a robust and high-fidelity description of polydisperse moderately dense evaporating sprays , 2016 .

[28]  Jitendra Kumar,et al.  Convergence analysis of sectional methods for solving breakage population balance equations-I: the fixed pivot technique , 2008, Numerische Mathematik.

[29]  Frédérique Laurent,et al.  NUMERICAL ANALYSIS OF EULERIAN MULTI-FLUID MODELS IN THE CONTEXT OF KINETIC FORMULATIONS FOR DILUTE EVAPORATING SPRAYS , 2006 .

[30]  D. Ramkrishna,et al.  ON THE SOLUTION OF POPULATION BALANCE EQUATIONS BY DISCRETIZATION--I . A FIXED PIVOT TECHNIQUE , 2003 .

[31]  Vanni,et al.  Approximate Population Balance Equations for Aggregation-Breakage Processes. , 2000, Journal of colloid and interface science.

[32]  Holger Dette,et al.  The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis , 1997 .

[33]  Hans-Jörg Bart,et al.  Solution of the population balance equation using the sectional quadrature method of moments (SQMOM) , 2009 .

[34]  Michael E. Mueller,et al.  A joint volume-surface model of soot aggregation with the method of moments , 2009 .

[35]  Ville Alopaeus,et al.  Solution of population balances with breakage and agglomeration by high-order moment-conserving method of classes , 2006 .

[36]  Michael E. Mueller,et al.  Modeling the oxidation-induced fragmentation of soot aggregates in laminar flames , 2011 .

[37]  Aldo Tagliani,et al.  Hausdorff moment problem and maximum entropy: A unified approach , 1999, Appl. Math. Comput..

[38]  A. Passalacqua,et al.  An extended quadrature-based moment method with log-normal kernel density functions , 2015 .

[39]  F. Mauss,et al.  Calculating the soot particle size distribution function in turbulent diffusion flames using a sectional method , 2007 .

[40]  Gerald Warnecke,et al.  MOMENT PRESERVING FINITE VOLUME SCHEMES FOR SOLVING POPULATION BALANCE EQUATIONS INCORPORATING AGGREGATION, BREAKAGE, GROWTH AND SOURCE TERMS , 2013 .

[41]  M. Wilck,et al.  A general approximation method for solving integrals containing a lognormal weighting function , 2001 .

[42]  Marc Massot,et al.  Simulation of reactive polydisperse sprays strongly coupled to unsteady flows in solid rocket motors: Efficient strategy using Eulerian Multi-Fluid methods , 2017, J. Comput. Phys..

[43]  Jitendra Kumar,et al.  Convergence analysis of sectional methods for solving breakage population balance equations-II: the cell average technique , 2008, Numerische Mathematik.

[44]  Gerassimos A. Athanassoulis,et al.  The truncated Hausdorff moment problem solved by using kernel density functions , 2002 .

[45]  D. Wright,et al.  Numerical advection of moments of the particle size distribution in Eulerian models , 2007 .

[46]  M. Anshelevich,et al.  Introduction to orthogonal polynomials , 2003 .

[47]  Rodney O. Fox,et al.  On the role of gas-phase and surface chemistry in the production of titania nanoparticles in turbulent flames , 2013 .

[48]  Zhi Jian Wang,et al.  Realizable high-order finite-volume schemes for quadrature-based moment methods , 2011, J. Comput. Phys..

[49]  Marc Massot,et al.  A high order moment method simulating evaporation and advection of a polydisperse liquid spray , 2012, J. Comput. Phys..

[50]  F. Laurent,et al.  Multi-fluid modelling of laminar polydisperse spray flames: origin, assumptions and comparison of sectional and sampling methods , 2001 .

[51]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[52]  Michael Frenklach,et al.  Aerosol dynamics modeling using the method of moments , 1987 .

[53]  Marc Massot,et al.  Numerical Strategy for Unsteady Two-Way Coupled Polydisperse Sprays: Application to Solid-Rocket Instabilities , 2014 .

[54]  F. Laurent,et al.  Numerical strategy for unsteady two-way coupling in polydisperse sprays: application to Solid Rocket Motor instabilities , 2014 .

[55]  D. Ramkrishna,et al.  On the solution of population balance equations by discretization - III. Nucleation, growth and aggregation of particles , 1997 .

[56]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[58]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[59]  H. Rutishauser Der Quotienten-Differenzen-Algorithmus , 1954 .

[60]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[61]  Antonello Barresi,et al.  Implementation of the population balance equation in CFD codes for modelling soot formation in turbulent flames , 2006 .

[62]  S. Rigopoulos Population balance modelling of polydispersed particles in reactive flows , 2010 .

[63]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[64]  Karline Soetaert,et al.  Solving Ordinary Differential Equations in R , 2012 .

[65]  D. Ramkrishna,et al.  Population balance modeling: current status and future prospects. , 2014, Annual review of chemical and biomolecular engineering.

[66]  Hans-Jörg Bart,et al.  Solution of the population balance equation using the sectional quadrature method of moments (SQMOM) , 2006 .

[67]  Jesse T. Pikturna,et al.  Quadrature method of moments for population‐balance equations , 2003 .

[68]  D. H. Griffel,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[69]  Frédérique Laurent,et al.  Realizable second-order finite-volume schemes for the advection of moment sets of the particle size distribution , 2017, J. Comput. Phys..

[70]  Francis Filbet,et al.  Convergence of a finite volume scheme for coagulation-fragmentation equations , 2007, Math. Comput..

[71]  Ofodike A. Ezekoye,et al.  Development of a hybrid sectional quadrature-based moment method for solving population balance equations , 2012 .

[72]  Holger Dette,et al.  Matrix measures, moment spaces and Favard's theorem for the interval [0,1] and [0,∞) , 2002 .

[73]  S. Pratsinis,et al.  Self-preserving size distributions of agglomerates , 1995 .

[74]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[75]  M. Frenklach Method of moments with interpolative closure , 2002 .

[76]  Francis Filbet,et al.  Numerical Simulation of the Smoluchowski Coagulation Equation , 2004, SIAM J. Sci. Comput..

[77]  Daniele Marchisio,et al.  Multivariate Quadrature-Based Moments Methods for turbulent polydisperse gas–liquid systems , 2013 .

[78]  Ankik Kumar Giri,et al.  Convergence analysis of sectional methods for solving aggregation population balance equations: The fixed pivot technique , 2013, 1303.6063.

[79]  Marc Massot,et al.  Adaptive Mesh Refinement and High Order Geometrical Moment Method for the Simulation of Polydisperse Evaporating Sprays , 2016 .

[80]  D. Ramkrishna,et al.  On the solution of population balance equations by discretization—II. A moving pivot technique , 1996 .

[81]  Gerald Warnecke,et al.  On the solution of population balances for nucleation, growth, aggregation and breakage processes , 2009 .

[82]  J. Seinfeld,et al.  Numerical solution of the dynamic equation for particulate systems , 1978 .

[83]  V. Alopaeus,et al.  Solution of population balances with growth and nucleation by high order moment-conserving method of classes , 2007 .

[84]  Daniele Marchisio,et al.  Computational Models for Polydisperse Particulate and Multiphase Systems , 2013 .

[85]  Aldo Tagliani,et al.  Maximum entropy solutions and moment problem in unbounded domains , 2003, Appl. Math. Lett..

[87]  Jitendra Kumar,et al.  Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations , 2014, 1403.1111.

[88]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[89]  F. Laurent,et al.  An extended quadrature method of moments for population balance equations , 2003 .

[90]  L. Mead,et al.  Maximum entropy in the problem of moments , 1984 .