A new mean field approach to finite spin systems

It is shown that a spin system is equivalent to a set of constrained harmonic oscillators. For finite, but large, systems, a continuous approximation to the density of states can be used, and the oscillator frequencies can be exactly computed. In the phase transition, the effective frequency of the lowest mode passes through zero, that is, it becomes an inverted oscillator. In the small oscillations regime, the oscillators can be treated as independent and the thermodynamic magnitudes can be computed. We show explicit calculations in a disordered, frustrated, high coordination number Blume Capel model with 60,000 spins.

[1]  F. Benaych-Georges,et al.  Lectures on the local semicircle law for Wigner matrices , 2016, 1601.04055.

[2]  J. Mydosh,et al.  Spin glasses: redux: an updated experimental/materials survey , 2015, Reports on progress in physics. Physical Society.

[3]  C. A. Lozano,et al.  Blume-Capel spin-glass model for Fe-Mn-Al alloys , 2013 .

[4]  Francesco Zamponi,et al.  Mean field theory of spin glasses , 2010, ArXiv.

[5]  A. Crisanti,et al.  Random Blume-Capel model on a cubic lattice: First-order inverse freezing in a three-dimensional spin-glass system , 2010, 1008.0024.

[6]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[7]  A. Cavagna,et al.  Spin-glass theory for pedestrians , 2005, cond-mat/0505032.

[8]  H. Katzgraber,et al.  Monte Carlo simulations of spin glasses at low temperatures , 2000, cond-mat/0007113.

[9]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[10]  J. A. Plascak,et al.  Mean field solution of the general spin Blume-Capel model☆ , 1993 .

[11]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[12]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[13]  École thématique du Cnrs,et al.  Slow Relaxations and nonequilibrium dynamics in condensed matter , 2003 .

[14]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .