A branch and bound strategy for Fast Trajectory Similarity Measuring

Abstract The increasing use of GPS-enabled devices allowed the collection of huge volumes of movement data in the form of trajectories. An important research problem in trajectory data analysis is the similarity measurement. For most applications, a trajectory-to-trajectory comparison is needed, and therefore, scalability of trajectory similarity measures directly impact the viability to use these techniques. Most similarity measures adopt a dynamic programming implementation, which has a quadratic time complexity in all cases, computing the pair-wise distance for all trajectory points, thus limiting the scalability of these measures. In this article we present a new strategy which takes into account the distance properties in Euclidean spaces to reduce the number of pair-wise point comparison required to determine all the matching points of two trajectories. An extensive experimental evaluation over real GPS trajectory datasets demonstrates the pruning power over 85% in the number of distance computations required to determine the matchings, and a significant execution time speed-up of up to one order of magnitude over the dynamic programming approach.

[1]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[2]  Eamonn Keogh Exact Indexing of Dynamic Time Warping , 2002, VLDB.

[3]  Hendrik T. Macedo,et al.  Grouping Similar Trajectories for Carpooling Purposes , 2015, 2015 Brazilian Conference on Intelligent Systems (BRACIS).

[4]  Henri Casanova,et al.  Indexing of Spatiotemporal Trajectories for Efficient Distance Threshold Similarity Searches on the GPU , 2015, 2015 IEEE International Parallel and Distributed Processing Symposium.

[5]  F. Itakura,et al.  Minimum prediction residual principle applied to speech recognition , 1975 .

[6]  Nikos Pelekis,et al.  Clustering uncertain trajectories , 2011, Knowledge and Information Systems.

[7]  Jun Pang,et al.  Constructing and Comparing User Mobility Profiles , 2014, TWEB.

[8]  Vania Bogorny,et al.  Multidimensional Similarity Measuring for Semantic Trajectories , 2016, Trans. GIS.

[9]  Dimitrios Gunopulos,et al.  Indexing Multidimensional Time-Series , 2004, The VLDB Journal.

[10]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[11]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[12]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[13]  Fabio Porto,et al.  A conceptual view on trajectories , 2008, Data Knowl. Eng..

[14]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[15]  Wang-Chien Lee,et al.  Clustering and aggregating clues of trajectories for mining trajectory patterns and routes , 2015, The VLDB Journal.

[16]  Vania Bogorny,et al.  Detecting avoidance behaviors between moving object trajectories , 2016, Data Knowl. Eng..

[17]  Francesco Bonchi,et al.  Anonymization of moving objects databases by clustering and perturbation , 2010, Inf. Syst..

[18]  M. Wachowicz,et al.  Exploring visitor movement patterns in natural recreational areas. , 2012 .

[19]  Yunjun Gao,et al.  Pivot-based Metric Indexing , 2017, Proc. VLDB Endow..

[20]  Philip Chan,et al.  Toward accurate dynamic time warping in linear time and space , 2007, Intell. Data Anal..

[21]  Gustavo E. A. P. A. Batista,et al.  Speeding Up All-Pairwise Dynamic Time Warping Matrix Calculation , 2016, SDM.

[22]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[23]  Vania Bogorny,et al.  Unveiling movement uncertainty for robust trajectory similarity analysis , 2018, Int. J. Geogr. Inf. Sci..

[24]  Archan Misra,et al.  TODMIS: mining communities from trajectories , 2013, CIKM.

[25]  Jignesh M. Patel,et al.  An efficient and accurate method for evaluating time series similarity , 2007, SIGMOD '07.

[26]  Christian S. Jensen,et al.  Efficient Vessel Tracking with Accuracy Guarantees , 2008, W2GIS.