2D MoN1.2‐rGO Stacked Heterostructures Enabled Water State Modification for Highly Efficient Interfacial Solar Evaporation

[1]  Y. Liu,et al.  Fully Lignocellulosic Biomass‐Based Double‐Layered Porous Hydrogel for Efficient Solar Steam Generation , 2022, Advanced Functional Materials.

[2]  G. Qin,et al.  High‐Entropy‐Alloy‐Nanoparticles Enabled Wood Evaporator for Efficient Photothermal Conversion and Sustainable Solar Desalination , 2022, Advanced Energy Materials.

[3]  Zhengtao Xu,et al.  Organic radicals stabilization above 300 °C in Eu-based coordination polymers for solar steam generation , 2022, Nature Communications.

[4]  L. Qu,et al.  A reconfigurable and magnetically responsive assembly for dynamic solar steam generation , 2022, Nature Communications.

[5]  Wanlin Guo,et al.  The mechanism for solar irradiation enhanced evaporation and electricity generation , 2022, Nano Energy.

[6]  G. Owens,et al.  More from less: improving solar steam generation by selectively removing a portion of evaporation surface. , 2022, Science bulletin.

[7]  Dylan Y. Hegh,et al.  2D Higher-Metal Nitride Nanosheets for Solar Steam Generation. , 2022, Small.

[8]  Yunpeng Huang,et al.  Xylem-Inspired Polyimide/MXene Aerogels with Radial Lamellar Architectures for Highly Sensitive Strain Detection and Efficient Solar Steam Generation. , 2022, Nano letters.

[9]  Lichun Dong,et al.  High‐Performance Freshwater Harvesting System by Coupling Solar Desalination and Fog Collection with Hierarchical Porous Microneedle Arrays , 2022, Advanced Functional Materials.

[10]  Yaoxin Zhang,et al.  High-flux Flowing Interfacial Water Evaporation Under Multiple Heating Sources Enabled by a Biohybrid Hydrogel , 2022, Nano Energy.

[11]  K. Yin,et al.  Hierarchically Structured Black Gold Film with Ultrahigh Porosity for Solar Steam Generation , 2022, Advanced materials.

[12]  Guihua Yu,et al.  Materials Innovation for Global Water Sustainability , 2022, ACS Materials Letters.

[13]  Dan Liu,et al.  Advanced 2D-2D heterostructures of transition metal dichalcogenides and nitrogen-rich nitrides for solar water generation , 2022, Nano Energy.

[14]  Jie Zhou,et al.  Biomimetic Design of Macroporous 3D Truss Materials for Efficient Interfacial Solar Steam Generation. , 2022, ACS nano.

[15]  Arne Thomas,et al.  A Covalent Organic Framework/Graphene Dual-Region Hydrogel for Enhanced Solar-Driven Water Generation. , 2022, Journal of the American Chemical Society.

[16]  Xiaofei Yang,et al.  Design and Performance Boost of a MOF-Functionalized-Wood Solar Evaporator through Tuning the Hydrogen-Bonding Interactions , 2022, Nano Energy.

[17]  Shaoan Cheng,et al.  Enhanced Interfacial Solar Evaporation through Formation of Micro‐Meniscuses and Microdroplets to Reduce Evaporation Enthalpy , 2022, Advanced Functional Materials.

[18]  Jia Zhu,et al.  Interfacial Solar Steam/Vapor Generation for Heating and Cooling , 2022, Advanced science.

[19]  Liming Wang,et al.  Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites , 2021, Advanced materials.

[20]  E. Wang,et al.  Toward Optimal Heat Transfer of 2D-3D Heterostructures via van der Waals Binding Effects. , 2021, ACS applied materials & interfaces.

[21]  G. Owens,et al.  Enhancing solar steam generation using a highly thermally conductive evaporator support. , 2021, Science bulletin.

[22]  Taeseup Song,et al.  Metastable Two-Dimensional Materials for Electrocatalytic Energy Conversions , 2021, Accounts of Materials Research.

[23]  Guihua Yu,et al.  Molecular Engineering of Hydrogels for Rapid Water Disinfection and Sustainable Solar Vapor Generation , 2021, Advanced materials.

[24]  Yanlin Song,et al.  3D Printing a Biomimetic Bridge‐Arch Solar Evaporator for Eliminating Salt Accumulation with Desalination and Agricultural Applications , 2021, Advanced materials.

[25]  Tianpeng Ding,et al.  Using the sun to co-generate electricity and freshwater , 2021, Joule.

[26]  Chun-Long Lu,et al.  Surface Patterning of Two-Dimensional Nanostructure-Embedded Photothermal Hydrogels for High-Yield Solar Steam Generation. , 2021, ACS nano.

[27]  Han Zhang,et al.  2D III‐Nitride Materials: Properties, Growth, and Applications , 2021, Advanced materials.

[28]  X. Xia,et al.  Emerging of Heterostructure Materials in Energy Storage: A Review , 2021, Advanced materials.

[29]  G. Owens,et al.  A Hollow and Compressible 3D Photothermal Evaporator for Highly Efficient Solar Steam Generation without Energy Loss , 2021 .

[30]  Bin Zhu,et al.  Interfacial Solar Vapor Generation: Materials and Structural Design , 2021 .

[31]  Le Shi,et al.  Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge , 2021, Nature Communications.

[32]  Sameer R. Rao,et al.  Dual-Stage Atmospheric Water Harvesting Device for Scalable Solar-Driven Water Production , 2020, Joule.

[33]  Kwok Hoe Chan,et al.  Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production , 2020 .

[34]  M. Jaroniec,et al.  Molten Salt-Directed Catalytic Synthesis of 2D Layered Transition-Metal Nitrides for Efficient Hydrogen Evolution , 2020, Chem.

[35]  Yonggang Yao,et al.  Highly Efficient Water Treatment via a Wood-Based and Reusable Filter , 2020 .

[36]  Yanlin Song,et al.  Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization , 2020, Nature Communications.

[37]  Guihua Yu,et al.  Synergistic Energy Nanoconfinement and Water Activation in Hydrogels for Efficient Solar Water Desalination. , 2019, ACS nano.

[38]  Guihua Yu,et al.  Architecting highly hydratable polymer networks to tune the water state for solar water purification , 2019, Science Advances.

[39]  Guihua Yu,et al.  Tailoring Nanoscale Surface Topography of Hydrogel for Efficient Solar Vapor Generation. , 2019, Nano letters.

[40]  F. Besenbacher,et al.  Dual-phase molybdenum nitride nanorambutans for solar steam generation under one sun illumination , 2019, Nano Energy.

[41]  Y. Jiao,et al.  Single-Crystal Nitrogen-Rich Two-Dimensional Mo5N6 Nanosheets for Efficient and Stable Seawater Splitting. , 2018, ACS nano.

[42]  Qinghua Zhang,et al.  Atmospheric‐Pressure Synthesis of 2D Nitrogen‐Rich Tungsten Nitride , 2018, Advanced materials.

[43]  Bin Zhu,et al.  Enhancement of Interfacial Solar Vapor Generation by Environmental Energy , 2018, Joule.

[44]  K. Ng,et al.  A 3D Photothermal Structure toward Improved Energy Efficiency in Solar Steam Generation , 2018, Joule.

[45]  N. Zhang,et al.  Cold Vapor Generation beyond the Input Solar Energy Limit , 2018, Advanced science.

[46]  Fei Zhao,et al.  Highly efficient solar vapour generation via hierarchically nanostructured gels , 2018, Nature Nanotechnology.

[47]  Y. Gogotsi,et al.  Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides. , 2017, ACS nano.

[48]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[49]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[50]  Wenshan Cai,et al.  3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination , 2016, Nature Photonics.

[51]  T. Nagao,et al.  Titanium Nitride Nanoparticles as Plasmonic Solar Heat Transducers , 2016 .

[52]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[53]  J. Fierro,et al.  XANES Mo L-Edges and XPS Study of Mo Loaded in HY Zeolite , 2002 .