Thalamic relays and cortical functioning.

[1]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[2]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[3]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[4]  R. Porter Progress in Brain Research , 1965, Nature.

[5]  J. Dowling,et al.  Organization of vertebrate retinas. , 1970, Investigative ophthalmology.

[6]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[7]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[9]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[10]  D. C. Essen,et al.  Visual areas of the mammalian cerebral cortex. , 1979 .

[11]  D. C. Essen,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[12]  R. Llinás,et al.  Electrophysiological properties of guinea‐pig thalamic neurones: an in vitro study. , 1984, The Journal of physiology.

[13]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[14]  S. Sherman Functional organization of the W-, X-, and Y- cell pathways in the cat: A review and hypothesis , 1985 .

[15]  M. Mayer,et al.  The physiology of excitatory amino acids in the vertebrate central nervous system , 1987, Progress in Neurobiology.

[16]  D. Puro The Retina. An Approachable Part of the Brain , 1988 .

[17]  R. Llinás,et al.  The functional states of the thalamus and the associated neuronal interplay. , 1988, Physiological reviews.

[18]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[19]  R. Nicoll,et al.  Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. , 1990, Physiological reviews.

[20]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[21]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[22]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[23]  S. Sherman,et al.  Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance. , 1992, Journal of neurophysiology.

[24]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[25]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[26]  K. H. Britten,et al.  Responses of neurons in macaque MT to stochastic motion signals , 1993, Visual Neuroscience.

[27]  D. Mott,et al.  The pharmacology and function of central GABAB receptors. , 1994, International review of neurobiology.

[28]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[29]  R. Guillery Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. , 1995, Journal of anatomy.

[30]  M. Nicolelis,et al.  Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. , 1995, Science.

[31]  W. Guido,et al.  Burst responses in thalamic relay cells of the awake behaving cat. , 1995, Journal of neurophysiology.

[32]  J. Bockaert,et al.  Get receptive to metabotropic glutamate receptors , 1995, Current Opinion in Neurobiology.

[33]  R. Duvoisin,et al.  The metabotropic glutamate receptors: Structure and functions , 1995, Neuropharmacology.

[34]  S. Sherman,et al.  Receiver operating characteristic (ROC) analysis of neurons in the cat's lateral geniculate nucleus during tonic and burst response mode , 1995, Visual Neuroscience.

[35]  M. Récasens,et al.  Excitatory Amino Acid Metabotropic Receptor Subtypes and Calcium Regulation , 1995, Annals of the New York Academy of Sciences.

[36]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[37]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[38]  S. Sherman,et al.  Dual response modes in lateral geniculate neurons: Mechanisms and functions , 1996, Visual Neuroscience.

[39]  E. Callaway,et al.  Contributions of individual layer 2–5 spiny neurons to local circuits in macaque primary visual cortex , 1996, Visual Neuroscience.

[40]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[41]  K. H. Britten,et al.  A relationship between behavioral choice and the visual responses of neurons in macaque MT , 1996, Visual Neuroscience.

[42]  K. Martin,et al.  Map of the synapses onto layer 4 basket cells of the primary visual cortex of the cat , 1997, The Journal of comparative neurology.

[43]  D. McCormick,et al.  Sleep and arousal: thalamocortical mechanisms. , 1997, Annual review of neuroscience.

[44]  J. Pin,et al.  Pharmacology and functions of metabotropic glutamate receptors. , 1997, Annual review of pharmacology and toxicology.

[45]  D. Watanabe,et al.  Glutamate receptors: brain function and signal transduction 1 Published on the World Wide Web on 21 October 1997. 1 , 1998, Brain Research Reviews.

[46]  L. P. O'Keefe,et al.  Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey , 1998, Visual Neuroscience.

[47]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[48]  H. Kamiya,et al.  Glutamate receptors in the mammalian central nervous system , 1998, Progress in Neurobiology.

[49]  F. Lenz,et al.  Neuronal activity in the region of the thalamic principal sensory nucleus (ventralis caudalis) in patients with pain following amputations , 1998, Neuroscience.

[50]  F. Lenz,et al.  Patterns of bursting occurring in thalamic cells during parkinsonian tremor , 1998, Neuroscience.

[51]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[52]  Erika E. Fanselow,et al.  Behavioral Modulation of Tactile Responses in the Rat Somatosensory System , 1999, The Journal of Neuroscience.

[53]  J Rinzel,et al.  Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat's lateral geniculate nucleus. , 1999, Journal of neurophysiology.

[54]  K. D. Davis,et al.  A comparison of the burst activity of lateral thalamic neurons in chronic pain and non-pain patients , 1999, Pain.

[55]  S. Sherman,et al.  Relative distribution of synapses in the A‐laminae of the lateral geniculate nucleus of the cat , 2000, The Journal of comparative neurology.

[56]  S. Sherman,et al.  Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys , 2000, Visual Neuroscience.

[57]  R. Guillery,et al.  Exploring the Thalamus , 2000 .

[58]  R. Reid,et al.  Synaptic Interactions between Thalamic Inputs to Simple Cells in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[59]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[60]  S. Sherman,et al.  Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. , 2000, Journal of neurophysiology.

[61]  J Rinzel,et al.  Dynamics of Low-Threshold Spike Activation in Relay Neurons of the Cat Lateral Geniculate Nucleus , 2001, The Journal of Neuroscience.

[62]  W. Guido,et al.  Burst and tonic response modes in thalamic neurons during sleep and wakefulness. , 2001, Journal of neurophysiology.

[63]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[64]  S. Sherman Tonic and burst firing: dual modes of thalamocortical relay , 2001, Trends in Neurosciences.

[65]  S. Schultz Principles of Neural Science, 4th ed. , 2001 .

[66]  H. Swadlow,et al.  The impact of 'bursting' thalamic impulses at a neocortical synapse , 2001, Nature Neuroscience.

[67]  Jon W. Johnson,et al.  Channel gating of NMDA receptors , 2002, Physiology & Behavior.

[68]  R. Reid,et al.  The spatial receptive field of thalamic inputs to single cortical simple cells revealed by the interaction of visual and electrical stimulation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[69]  B. Connors,et al.  Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex. , 2002, Journal of neurophysiology.

[70]  Ann M. Graybiel,et al.  A Genetic Basis for Obsessive Grooming , 2002, Neuron.

[71]  R. Guillery,et al.  Thalamic Relay Functions and Their Role in Corticocortical Communication Generalizations from the Visual System , 2002, Neuron.

[72]  S. Nelson,et al.  Short-Term Depression at Thalamocortical Synapses Contributes to Rapid Adaptation of Cortical Sensory Responses In Vivo , 2002, Neuron.

[73]  H. Swadlow,et al.  Activation of a Cortical Column by a Thalamocortical Impulse , 2002, The Journal of Neuroscience.

[74]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[75]  M. Castro-Alamancos,et al.  Cortical sensory suppression during arousal is due to the activity‐dependent depression of thalamocortical synapses , 2002, The Journal of physiology.

[76]  Alexander Grunewald,et al.  Neural Correlates of Structure-from-Motion Perception in Macaque V1 and MT , 2002, The Journal of Neuroscience.

[77]  Depression at Thalamocortical Synapses The Key for Cortical Neuronal Adaptation? , 2002, Neuron.

[78]  R. Guillery,et al.  The thalamus as a monitor of motor outputs. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[79]  R W Guillery,et al.  The role of the thalamus in the flow of information to the cortex. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[80]  J. E. Huettner Kainate receptors and synaptic transmission , 2003, Progress in Neurobiology.

[81]  P. Conn Physiological Roles and Therapeutic Potential of Metabotropic Glutamate Receptors , 2003, Annals of the New York Academy of Sciences.

[82]  J. Movshon,et al.  Neuronal Adaptation to Visual Motion in Area MT of the Macaque , 2003, Neuron.

[83]  R. Guillery Branching thalamic afferents link action and perception. , 2003, Journal of neurophysiology.

[84]  O. D. Creutzfeldt,et al.  Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat , 1978, Experimental Brain Research.

[85]  J. Edeline,et al.  Auditory thalamus bursts in anesthetized and non-anesthetized states: contribution to functional properties. , 2004, Journal of neurophysiology.

[86]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[87]  W. Bialek,et al.  Time Course of Information about Motion Direction in Visual Area MT of Macaque Monkeys , 2004, The Journal of Neuroscience.

[88]  R. Guillery Anatomical pathways that link perception and action. , 2005, Progress in brain research.

[89]  Frances S. Chance,et al.  Drivers and modulators from push-pull and balanced synaptic input. , 2005, Progress in brain research.

[90]  H. Swadlow,et al.  Spike timing and synaptic dynamics at the awake thalamocortical synapse. , 2005, Progress in brain research.

[91]  R. K. Simpson Nature Neuroscience , 2022 .