SUMOylation-dependent localization of IKKepsilon in PML nuclear bodies is essential for protection against DNA-damage-triggered cell death.

[1]  M. Schmitz,et al.  Inducible Phosphorylation of NF-κB p65 at Serine 468 by T Cell Costimulation Is Mediated by IKKϵ* , 2006, Journal of Biological Chemistry.

[2]  J. Tschopp,et al.  Signals from within: the DNA-damage-induced NF-κB response , 2006, Cell Death and Differentiation.

[3]  P. Cohen,et al.  Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation. , 2009, The Journal of biological chemistry.

[4]  Nathan R. Qi,et al.  The Protein Kinase IKKɛ Regulates Energy Balance in Obese Mice , 2009, Cell.

[5]  J. Tschopp,et al.  PIDD Mediates NF-κB Activation in Response to DNA Damage , 2005, Cell.

[6]  P. Freemont,et al.  PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. , 1996, Oncogene.

[7]  R. Tibbetts,et al.  Molecular Linkage Between the Kinase ATM and NF-κB Signaling in Response to Genotoxic Stimuli , 2006, Science.

[8]  R. Bristow,et al.  Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, Chk2, and ATR , 2006, The Journal of cell biology.

[9]  S. Miyamoto,et al.  Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. , 2003, Cell.

[10]  S. Miyamoto,et al.  Many faces of NF-kappaB signaling induced by genotoxic stress. , 2007, Journal of molecular medicine.

[11]  Erica S. Johnson,et al.  An E3-like Factor that Promotes SUMO Conjugation to the Yeast Septins , 2001, Cell.

[12]  E. Yeh,et al.  SUMOylation and De-SUMOylation: Wrestling with Life's Processes* , 2009, Journal of Biological Chemistry.

[13]  C. Bieberich,et al.  Ubiquitination by TOPORS Regulates the Prostate Tumor Suppressor NKX3.1* , 2008, Journal of Biological Chemistry.

[14]  A. Möller,et al.  Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. , 2006, Molecular cell.

[15]  W. Simonds,et al.  topors, a p53 and topoisomerase I-binding RING finger protein, is a coactivator of p53 in growth suppression induced by DNA damage , 2005, Oncogene.

[16]  K. Vousden Outcomes of p53 activation - spoilt for choice , 2006, Journal of Cell Science.

[17]  Rosa Bernardi,et al.  Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies , 2007, Nature Reviews Molecular Cell Biology.

[18]  Guo-Ping Zhou,et al.  Triggering the Interferon Antiviral Response Through an IKK-Related Pathway , 2003, Science.

[19]  J Wade Harper,et al.  The DNA damage response: ten years after. , 2007, Molecular cell.

[20]  J. Tainer,et al.  Molecular Mimicry of SUMO Promotes DNA Repair , 2009, Nature Structural &Molecular Biology.

[21]  B. Hemmings,et al.  PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage , 2009, Oncogene.

[22]  J. Gatot,et al.  Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? , 2008, Trends in biochemical sciences.

[23]  S. Jentsch,et al.  Principles of ubiquitin and SUMO modifications in DNA repair , 2009, Nature.

[24]  S. Weger,et al.  Topors acts as a SUMO‐1 E3 ligase for p53 in vitro and in vivo , 2005, FEBS letters.

[25]  B. Helmink,et al.  DNA double strand breaks activate a multi-functional genetic program in developing lymphocytes , 2008, Nature.

[26]  Pier Paolo Pandolfi,et al.  PML regulates p53 acetylation and premature senescence induced by oncogenic Ras , 2000, Nature.

[27]  S. Miyamoto,et al.  Many faces of NF-κB signaling induced by genotoxic stress , 2007, Journal of Molecular Medicine.

[28]  N. Perkins Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway , 2006, Oncogene.

[29]  S. Ghosh,et al.  Shared Principles in NF-κB Signaling , 2008, Cell.

[30]  P. Pandolfi,et al.  PML is a direct p53 target that modulates p53 effector functions. , 2004, Molecular cell.

[31]  R. Schwabe,et al.  IKKβ phosphorylates p65 at S468 in transactivaton domain 2 , 2005 .

[32]  M. Tatham,et al.  RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation , 2008, Nature Cell Biology.

[33]  J. Tschopp,et al.  Signals from within: the DNA-damage-induced NF-kappaB response. , 2006, Cell death and differentiation.

[34]  M. Lavin,et al.  Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer , 2008, Nature Reviews Molecular Cell Biology.

[35]  P. Pandolfi,et al.  The topoisomerase I-binding RING protein, topors, is associated with promyelocytic leukemia nuclear bodies. , 2002, Experimental cell research.

[36]  S. Miyamoto,et al.  Sequential Modification of NEMO/IKKγ by SUMO-1 and Ubiquitin Mediates NF-κB Activation by Genotoxic Stress , 2003, Cell.

[37]  Pier Paolo Pandolfi,et al.  The mechanisms of PML-nuclear body formation. , 2006, Molecular cell.

[38]  P. Pearson,et al.  Atmospheric carbon dioxide concentrations over the past 60 million years , 2000, Nature.

[39]  Eric S. Lander,et al.  Integrative Genomic Approaches Identify IKBKE as a Breast Cancer Oncogene , 2007, Cell.

[40]  J. Piette,et al.  NF-kappaB activation by double-strand breaks. , 2006, Biochemical pharmacology.

[41]  Ailan Guo,et al.  The function of PML in p53-dependent apoptosis , 2000, Nature Cell Biology.

[42]  S. Miyamoto,et al.  PIASy mediates NEMO sumoylation and NF-κB activation in response to genotoxic stress , 2006, Nature Cell Biology.

[43]  Erik Meulmeester,et al.  Cell biology: SUMO , 2008, Nature.

[44]  A. Dejean,et al.  Deconstructing PML‐induced premature senescence , 2002, The EMBO journal.

[45]  J. Tschopp,et al.  PIDD mediates NF-kappaB activation in response to DNA damage. , 2005, Cell.

[46]  M. Lei,et al.  Arsenic degrades PML or PML–RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway , 2008, Nature Cell Biology.

[47]  Ivan Dikic,et al.  Specification of SUMO1- and SUMO2-interacting Motifs* , 2006, Journal of Biological Chemistry.

[48]  Michael Karin,et al.  Regulation and Function of IKK and IKK-Related Kinases , 2006, Science's STKE.

[49]  P. Lichter,et al.  Macromolecular crowding and its potential impact on nuclear function. , 2008, Biochimica et biophysica acta.

[50]  J. Petrini,et al.  DNA Damage-Dependent Nuclear Dynamics of the Mre11 Complex , 2001, Molecular and Cellular Biology.

[51]  W. Hahn,et al.  Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKepsilon promotes cell transformation. , 2009, Molecular cell.

[52]  P. Pandolfi,et al.  Regulation of apoptosis by PML and the PML-NBs , 2008, Oncogene.

[53]  J. Piette,et al.  NF-κB activation by double-strand breaks , 2006 .

[54]  C. Glass,et al.  Transcriptional integration of TLR2 and TLR4 signaling at the NCoR derepression checkpoint. , 2009, Molecular cell.

[55]  J. Brownell,et al.  Topors Functions as an E3 Ubiquitin Ligase with Specific E2 Enzymes and Ubiquitinates p53* , 2004, Journal of Biological Chemistry.

[56]  T. Maniatis,et al.  IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. , 2003, Nature immunology.

[57]  Mazhar Adli,et al.  IKK-i/IKKϵ Controls Constitutive, Cancer Cell-associated NF-κB Activity via Regulation of Ser-536 p65/RelA Phosphorylation* , 2006, Journal of Biological Chemistry.

[58]  S. Akira,et al.  Cutting Edge: Role of TANK-Binding Kinase 1 and Inducible IκB Kinase in IFN Responses against Viruses in Innate Immune Cells1 , 2006, The Journal of Immunology.

[59]  R. Schwabe,et al.  IKKbeta phosphorylates p65 at S468 in transactivaton domain 2. , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.