SCALABILITY ANALYSIS OF PARALLEL GMRES IMPLEMENTATIONS
暂无分享,去创建一个
[1] Rakesh K. Kapania,et al. A new adaptive GMRES algorithm for achieving high accuracy , 1998, Numer. Linear Algebra Appl..
[2] Yousef Saad,et al. Iterative solution of general sparse linear systems on clusters of workstations , 1996 .
[3] Roger B. Sidje,et al. Alternatives for parallel Krylov subspace basis computation , 1997, Numer. Linear Algebra Appl..
[4] Anoop Gupta,et al. Scaling parallel programs for multiprocessors: methodology and examples , 1993, Computer.
[5] G. Stewart,et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .
[6] Vipin Kumar,et al. Isoefficiency: measuring the scalability of parallel algorithms and architectures , 1993, IEEE Parallel & Distributed Technology: Systems & Applications.
[7] Eorge,et al. Unstructured Graph Partitioning and Sparse Matrix Ordering System Version 2 . 0 , 1995 .
[8] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[9] Maria Sosonkina Driver,et al. Parallel Sparse Linear Algebra for Homotopy Methods , 1997 .
[10] C. Bischof,et al. Robust incremental condition estimation , 1991 .
[11] Å. Björck. Solving linear least squares problems by Gram-Schmidt orthogonalization , 1967 .
[12] H. V. D. Vorst,et al. The superlinear convergence behaviour of GMRES , 1993 .
[13] Masha Sosonkina,et al. Scalability of Adaptive GMRES Algorithm , 1997, PPSC.
[14] H. Walker,et al. GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..
[15] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[16] H. Walker. Implementation of the GMRES method using householder transformations , 1988 .