A simple adaptive controller based on a low-pass filter to stabilize unstable steady states of dynamical systems is considered. The controller is reference-free; it does not require knowledge of the location of the fixed point in the phase space. A topological limitation similar to that of the delayed feedback controller is discussed. We show that the saddle-type steady states cannot be stabilized by using the conventional low-pass filter. The limitation can be overcome by using an unstable low-pass filter. The use of the controller is demonstrated for several physical models, including the pendulum driven by a constant torque, the Lorenz system, and an electrochemical oscillator. Linear and nonlinear analyses of the models are performed and the problem of the basins of attraction of the stabilized steady states is discussed. The robustness of the controller is demonstrated in experiments and numerical simulations with an electrochemical oscillator, the dissolution of nickel in sulfuric acid; a comparison of the effect of using direct and indirect variables in the control is made. With the use of the controller, all unstable phase-space objects are successfully reconstructed experimentally.