miR-281, an abundant midgut-specific miRNA of the vector mosquito Aedes albopictus enhances dengue virus replication

[1]  H. Zhang,et al.  miR-281, an abundant midgut-specific miRNA of the vector mosquito Aedes albopictus enhances dengue virus replication , 2014, Parasites & Vectors.

[2]  S. Asgari,et al.  MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells , 2014, Proceedings of the National Academy of Sciences.

[3]  Santhosh Puthiyakunnon,et al.  Functional characterization of three MicroRNAs of the Asian Tiger Mosquito, Aedes albopictus , 2013, Parasites & Vectors.

[4]  A. James,et al.  miRNA Genes of an Invasive Vector Mosquito, Aedes albopictus , 2013, PloS one.

[5]  Tianying Wang,et al.  MiR-10a* up-regulates coxsackievirus B3 biosynthesis by targeting the 3D-coding sequence , 2013, Nucleic acids research.

[6]  Thomas Walker,et al.  Blood meal induced microRNA regulates development and immune associated genes in the Dengue mosquito vector, Aedes aegypti. , 2013, Insect biochemistry and molecular biology.

[7]  Donncha F. O’Brien,et al.  Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects , 2012, Nature Medicine.

[8]  A. Pasquinelli MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship , 2012, Nature Reviews Genetics.

[9]  Lee Ching Ng,et al.  Economic Impact of Dengue Illness and the Cost-Effectiveness of Future Vaccination Programs in Singapore , 2011, PLoS neglected tropical diseases.

[10]  S. Asgari,et al.  Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti , 2011, Proceedings of the National Academy of Sciences.

[11]  B. Shapiro,et al.  Identification of Cis-Acting Elements in the 3′-Untranslated Region of the Dengue Virus Type 2 RNA That Modulate Translation and Replication* , 2011, The Journal of Biological Chemistry.

[12]  Donald S. Shepard,et al.  Economic Impact of Dengue Illness in the Americas , 2011, The American journal of tropical medicine and hygiene.

[13]  P. Sarnow,et al.  Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex , 2011, Proceedings of the National Academy of Sciences.

[14]  A. Raikhel,et al.  microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti , 2010, Proceedings of the National Academy of Sciences.

[15]  Rosanna W. Peeling,et al.  Dengue: a continuing global threat , 2010, Nature Reviews Microbiology.

[16]  P. Roux,et al.  Differential Protein Modulation in Midguts of Aedes aegypti Infected with Chikungunya and Dengue 2 Viruses , 2010, PloS one.

[17]  B. Cullen,et al.  Viruses, microRNAs, and host interactions. , 2010, Annual review of microbiology.

[18]  Yuehua Wu,et al.  Quantitative analysis of replication and tropisms of Dengue virus type 2 in Aedes albopictus. , 2010, The American journal of tropical medicine and hygiene.

[19]  Z. Xi,et al.  Response of the mosquito protein interaction network to dengue infection , 2010, BMC Genomics.

[20]  Z. Tu,et al.  Direct sequencing and expression analysis of a large number of miRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAs , 2009, BMC Genomics.

[21]  S. Asgari,et al.  Functional Analysis of a Cellular MicroRNA in Insect Host-Ascovirus Interaction , 2009, Journal of Virology.

[22]  Stefanie Dimmeler,et al.  MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice , 2009, Science.

[23]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[24]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[25]  A. Gamarnik,et al.  Structural and Functional Studies of the Promoter Element for Dengue Virus RNA Replication , 2008, Journal of Virology.

[26]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[27]  Z. Tu,et al.  Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi , 2008, BMC Genomics.

[28]  A. Hüttenhofer,et al.  Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion , 2007, Nucleic acids research.

[29]  Jialing Huang,et al.  Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes , 2007, Nature Medicine.

[30]  Z. Xi,et al.  Protocol for Dengue Infections in Mosquitoes (A. aegypti) and Infection Phenotype Determination , 2007, Journal of visualized experiments : JoVE.

[31]  M. Stoffel,et al.  Specificity, duplex degradation and subcellular localization of antagomirs , 2007, Nucleic acids research.

[32]  A. Gamarnik,et al.  A 5' RNA element promotes dengue virus RNA synthesis on a circular genome. , 2006, Genes & development.

[33]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[34]  J. Patz,et al.  Impact of regional climate change on human health , 2005, Nature.

[35]  P. Sarnow,et al.  Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA , 2005, Science.

[36]  A. Saïb,et al.  A Cellular MicroRNA Mediates Antiviral Defense in Human Cells , 2005, Science.

[37]  D. Gubler Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. , 2002, Trends in microbiology.

[38]  B. Beaty,et al.  Titration of dengue viruses by immunofluorescence in microtiter plates , 1984, Journal of clinical microbiology.

[39]  Y. Yang,et al.  Human cases of simultaneous echinococcosis and tuberculosis - significance and extent in China , 2009, Parasites & Vectors.

[40]  I. Sánchez-Vargas,et al.  Eccentricity and Centrality , 1995 .

[41]  C. Rice,et al.  Flavivirus genome organization, expression, and replication. , 1990, Annual review of microbiology.

[42]  B. Cullen,et al.  Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus , 2010, BMC Genomics.