Proof step analysis for proof tutoring - a learning approach to granularity

We present a proof step diagnosis module based on the mathematical assistant system Ωmega. The task of this module is to evaluate proof steps as typically uttered by students in tutoring sessions on mathematical proofs. In particular, we categorise the step size of proof steps performed by the student, in order to recognise if they are appropriate with respect to the student model. We propose an approach which builds on reconstructions of the proof in question via automated proof search using a cognitively motivated proof calculus. Our approach employs learning techniques and incorporates a student model, and our diagnosis module can be adjusted to different domains and users. We present a first evaluation based on empirical data.

[1]  Serge Autexier,et al.  Synthesizing Proof Planning Methods and Omega-Ants Agents from Mathematical Knowledge , 2006, MKM.

[2]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[3]  Mark Buckley,et al.  Verification of Proof Steps for Tutoring Mathematical Proofs , 2007, AIED.

[4]  Bor-Yuh Evan Chang,et al.  Human-Readable Machine-Verifiable Proofs for Teaching Constructive Logic , 2001 .

[5]  Christoph Benzmüller,et al.  A Generic Modular Data Structure for Proof Attempts Alternating on Ideas and Granularity , 2005, MKM.

[6]  R. Matthews,et al.  Vygotsky's philosophy: Constructivism and its criticisms examined , 2005 .

[7]  Cezary Kaliszyk,et al.  Teaching logic using a state-of-the-art proof assistant , 2007 .

[8]  LogicMarcello D'Agostino,et al.  WinKE : A Proof Assistant for Teaching , 1998 .

[9]  Christoph Benzmüller,et al.  Deep Inference for Automated Proof Tutoring? , 2007, KI.

[10]  Jörg H. Siekmann,et al.  Tutorial dialogs on mathematical proofs , 2003, IJCAI 2003.

[11]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[12]  Richard Sommer,et al.  A Proof Environment for Teaching Mathematics , 2004, Journal of Automated Reasoning.

[13]  Richard Sommer,et al.  A Computer Environment for Writing Ordinary Mathematical Proofs , 2001, LPAR.

[14]  Xiaorong Huang,et al.  Reconstruction Proofs at the Assertion Level , 1994, CADE.

[15]  Ivana Kruijff-Korbayová,et al.  A corpus of tutorial dialogs on theorem proving; the influence of the presentation of the study-material , 2006, LREC.

[16]  Jörg H. Siekmann,et al.  Computer supported mathematics with Omegamega , 2006, J. Appl. Log..

[17]  Serge Autexier,et al.  The CoRe Calculus , 2005, CADE.

[18]  B. Schölkopf,et al.  Advances in kernel methods: support vector learning , 1999 .

[19]  Richard Sommer,et al.  A Proof Environment for Teaching Mathematics , 2004 .

[20]  J. R. Quinlan,et al.  Data Mining Tools See5 and C5.0 , 2004 .

[21]  Frank Pfenning,et al.  ETPS: A System to Help Students Write Formal Proofs , 2004, Journal of Automated Reasoning.

[22]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[23]  Christoph Benzmüller,et al.  Judging Granularity for Automated Mathematics Teaching , 2006, ICLP 2006.

[24]  L. Rips The Psychology of Proof: Deductive Reasoning in Human Thinking , 1994 .

[25]  Richard Scheines,et al.  Computer Environments for Proof Construction , 1994, Interact. Learn. Environ..

[26]  Ivana Kruijff-Korbayová,et al.  DiaWOz-II - A Tool for Wizard-of-Oz Experiments in Mathematics , 2006, KI.