Recent developments and simulations utilizing bond-order potentials

Bond-order potentials (BOPs) have been used successfully in simulations of a wide range of processes. A brief overview of bond-order potentials is provided which focuses on the reactive empirical bond-order (REBO) potential for hydrocarbons (Brenner et al 2002 J. Phys.: Condens. Matter 14 783) and the large number of useful potentials it has spawned. Two specific extensions of the REBO potential that make use of its formalism are discussed. First, the 2B-SiCH potential (Schall and Harrison 2013 J. Phys. Chem. C 117 1323) makes the appropriate changes to the hydrocarbon REBO potential so that three atom types, Si, C, and H, can be modeled. Second, we recently added the electronegative element O, along with the associated charge terms, to the adaptive intermolecular REBO (AIREBO) potential (Stuart et al 2000 J. Chem. Phys. 112 6472). The resulting qAIREBO potential (Knippenberg et al 2012 J. Chem. Phys. 136 164701) makes use of the bond-order potential/split-charge (BOP/SQE) equilibration method (Mikulski et al 2009 J. Chem. Phys. 131 241105) and the Lagrangian approach to charge dynamics (Rick et al 1994 J. Chem. Phys. 101 6141). The integration of these two techniques allows for atomic charges to evolve with time during MD simulations: as a result, chemical reactions can be modeled in C-, O-, and H-containing systems. The usefulness of the 2B-SiCH potential for tribological investigations is demonstrated in molecular dynamics (MD) simulations of axisymmetric tips composed of Si and SiC placed in sliding contact with diamond(1 1 1) surfaces with varying amounts of hydrogen termination. The qAIREBO potential is used to investigate confinement of sub-monolayer coverages of water between nanostructured surfaces.

[1]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[2]  J. D. Doll,et al.  Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids , 1976 .

[3]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[4]  Abell Empirical chemical pseudopotential theory of molecular and metallic bonding. , 1985, Physical review. B, Condensed matter.

[5]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[6]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[7]  J. Tersoff,et al.  Empirical interatomic potential for silicon with improved elastic properties. , 1988, Physical review. B, Condensed matter.

[8]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[9]  D. Pettifor,et al.  New many-body potential for the bond order. , 1989, Physical review letters.

[10]  M. Gardos,et al.  The effect of environment on the tribological properties of polycrystalline diamond films , 1990 .

[11]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[12]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[13]  Frederick H. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994 .

[14]  Bernard R. Brooks,et al.  New spherical‐cutoff methods for long‐range forces in macromolecular simulation , 1994, J. Comput. Chem..

[15]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[16]  Harry A. Atwater,et al.  Empirical interatomic potential for Si-H interactions. , 1995, Physical review. B, Condensed matter.

[17]  Keith Beardmore,et al.  Empirical potentials for C-Si-H systems with application to C60 interactions with Si crystal surfaces , 1996 .

[18]  Phillip V. Smith,et al.  Extension of the Brenner empirical interatomic potential to CSiH systems , 1996 .

[19]  R. V. D. Oetelaar,et al.  Atomic-scale friction on diamond(111) studied by ultra-high vacuum atomic force microscopy , 1997 .

[20]  Aiichiro Nakano,et al.  Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics , 1997 .

[21]  E. Kaxiras,et al.  INTERATOMIC POTENTIAL FOR SILICON DEFECTS AND DISORDERED PHASES , 1997, cond-mat/9712058.

[22]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[23]  G. Fenske,et al.  Tribological properties of nanocrystalline diamond films , 1999 .

[24]  D. G. Pettifor,et al.  Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory , 1999 .

[25]  Riccardo Chelli,et al.  Electrical response in chemical potential equalization schemes , 1999 .

[26]  J. Field,et al.  The friction of CVD diamond at high Hertzian stresses: the effect of load, environment and sliding velocity , 2000 .

[27]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[28]  D. Pettifor,et al.  Bounded analytic bond-order potentials for sigma and pi bonds , 2000, Physical review letters.

[29]  J. Mintmire,et al.  Efficient parallel algorithms for molecular dynamics simulations using variable charge transfer electrostatic potentials , 2000 .

[30]  Kai Nordlund,et al.  Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon , 2002 .

[31]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[32]  S. Frankland,et al.  Atomic Modeling of Carbon-Based Nanostructures as a Tool for Developing New Materials and Technologies , 2002 .

[33]  J. Harrison,et al.  Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. , 2002, Journal of the American Chemical Society.

[34]  David G. Pettifor,et al.  Analytic bond-order potential for open and close-packed phases , 2002 .

[35]  Carlo Sbraccia,et al.  Modified XB potential for simulating interactions of organic molecules with Si surfaces , 2002 .

[36]  Riccardo Chelli,et al.  Comment on “Classical polarizable force fields parametrized from ab initio calculations” [J. Chem. Phys. 117, 1416 (2002)] , 2003 .

[37]  Ronen Zangi,et al.  Bilayer ice and alternate liquid phases of confined water , 2003 .

[38]  Susan B. Sinnott,et al.  A reactive empirical bond order (REBO) potential for hydrocarbon oxygen interactions , 2004 .

[39]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[40]  Riccardo Chelli,et al.  Comment to “Calculation of the Dipole Moment for Polypeptides Using the Generalized Born-Electronegativity Equalization Method: Results in Vacuum and Continuum-Dielectric Solvent” , 2004 .

[41]  L. G. Dias,et al.  Calculation of the dipole moment for polypeptides using the generalized born-electronegativity equalization method: Results in vacuum and continuum-dielectric solvent , 2004 .

[42]  Ronen Zangi,et al.  Water confined to a slab geometry: a review of recent computer simulation studies , 2004 .

[43]  D. Graves,et al.  Improved interatomic potentials for silicon-fluorine and silicon-chlorine. , 2004, The Journal of chemical physics.

[44]  Jee-Gong Chang,et al.  The effects of confinement on the behavior of water molecules between parallel Au plates of (001) planes. , 2005, The Journal of chemical physics.

[45]  Andrew T. S. Wee,et al.  Nanoscale materials patterning and engineering by atomic force microscopy nanolithography , 2006 .

[46]  J. Harrison,et al.  Elastic constants of diamond from molecular dynamics simulations , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[47]  R. A. Nistor,et al.  A generalization of the charge equilibration method for nonmetallic materials. , 2006, The Journal of chemical physics.

[48]  S. Adelman,et al.  Generalized Langevin Equations and Many‐Body Problems in Chemical Dynamics , 2007 .

[49]  The behavior of water molecules nanoconfined between parallel Au plates , 2007 .

[50]  Donald W. Brenner,et al.  Quantum‐Based Analytic Interatomic Forces and Materials Simulation , 2007 .

[51]  Sandeep Patel,et al.  Origin and control of superlinear polarizability scaling in chemical potential equalization methods. , 2008, The Journal of chemical physics.

[52]  W. Sawyer,et al.  Origin of ultralow friction and wear in ultrananocrystalline diamond. , 2008, Physical review letters.

[53]  Judith A. Harrison,et al.  Elastic constants of silicon materials calculated as a function of temperature using a parametrization of the second-generation reactive empirical bond-order potential , 2008 .

[54]  Peter Gumbsch,et al.  Describing bond-breaking processes by reactive potentials: Importance of an environment-dependent interaction range , 2008 .

[55]  Francois Gygi,et al.  Water confined in nanotubes and between graphene sheets: a first principle study. , 2008, Journal of the American Chemical Society.

[56]  J. Harrison,et al.  Merging bond-order potentials with charge equilibration. , 2009, The Journal of chemical physics.

[57]  Ute Drechsler,et al.  Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. , 2010, Nature nanotechnology.

[58]  A. K. Tyagi,et al.  Tribological properties of ultrananocrystalline diamond films in various test atmosphere , 2011 .

[59]  Tzu-Ray Shan,et al.  Reparameterization of the REBO-CHO potential for graphene oxide molecular dynamics simulations , 2011 .

[60]  D. Brenner,et al.  Vibrational Properties and Specific Heat of Ultrananocrystalline Diamond: Molecular Dynamics Simulations , 2011 .

[61]  Peter Gumbsch,et al.  Bond order potentials for fracture, wear, and plasticity , 2012 .

[62]  Donald W. Brenner,et al.  Three decades of many-body potentials in materials research , 2012 .

[63]  Xiaolei Shi,et al.  Composite diamond-DLC coated nanoprobe tips for wear resistance and adhesion reduction , 2012 .

[64]  Wear‐Resistant Nanoscale Silicon Carbide Tips for Scanning Probe Applications , 2012 .

[65]  Robert W. Carpick,et al.  Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films , 2012 .

[66]  S. Stuart,et al.  Bond-order potentials with split-charge equilibration: application to C-, H-, and O-containing systems. , 2012, The Journal of chemical physics.

[67]  A. K. Tyagi,et al.  Improvement in tribological properties by modification of grain boundary and microstructure of ultrananocrystalline diamond films. , 2013, ACS applied materials & interfaces.

[68]  Judith A. Harrison,et al.  Reactive Bond-Order Potential for Si-, C-, and H-Containing Materials , 2013 .

[69]  K. Turner,et al.  Adhesion of nanoscale asperities with power-law profiles , 2013 .

[70]  K. Turner,et al.  The Effect of Atomic-Scale Roughness on the Adhesion of Nanoscale Asperities: A Combined Simulation and Experimental Investigation , 2013, Tribology Letters.

[71]  A. K. Tyagi,et al.  Humidity-dependent friction mechanism in an ultrananocrystalline diamond film , 2013 .

[72]  Kevin T Turner,et al.  Atomic-scale wear of amorphous hydrogenated carbon during intermittent contact: a combined study using experiment, simulation, and theory. , 2014, ACS nano.

[73]  K. Turner,et al.  Simulated adhesion between realistic hydrocarbon materials: effects of composition, roughness, and contact point. , 2014, Langmuir : the ACS journal of surfaces and colloids.