MRI to CTA Translation for Pulmonary Artery Evaluation Using CycleGANs Trained with Unpaired Data

[1]  Su Ruan,et al.  Medical Image Synthesis with Context-Aware Generative Adversarial Networks , 2016, MICCAI.

[2]  Ming Dong,et al.  Generating synthetic CTs from magnetic resonance images using generative adversarial networks , 2018, Medical physics.

[3]  Yaozong Gao,et al.  Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks , 2016, LABELS/DLMIA@MICCAI.

[4]  Yang Lei,et al.  MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. , 2019, Medical physics.

[5]  Gillian Macnaught,et al.  Unsupervised learning for cross-domain medical image synthesis using deformation invariant cycle consistency networks , 2018, SASHIMI@MICCAI.

[6]  Xiao Han,et al.  MR‐based synthetic CT generation using a deep convolutional neural network method , 2017, Medical physics.

[7]  Raúl San José Estépar,et al.  3D Pulmonary Artery Segmentation from CTA Scans Using Deep Learning with Realistic Data Augmentation , 2018, RAMBO+BIA+TIA@MICCAI.

[8]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[9]  Bin Yang,et al.  Unsupervised Medical Image Translation Using Cycle-MedGAN , 2019, 2019 27th European Signal Processing Conference (EUSIPCO).

[10]  Andreas K. Maier,et al.  Synthetic Fundus Fluorescein Angiography using Deep Neural Networks , 2018, Bildverarbeitung für die Medizin.

[11]  Bradley D. Allen,et al.  4D flow imaging with MRI. , 2014, Cardiovascular diagnosis and therapy.

[12]  Jelmer M. Wolterink,et al.  Deep MR to CT Synthesis Using Unpaired Data , 2017, SASHIMI@MICCAI.

[13]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[14]  Dinggang Shen,et al.  Medical Image Synthesis with Deep Convolutional Adversarial Networks , 2018, IEEE Transactions on Biomedical Engineering.