Author manuscript, published in "Journal of Mathematical Imaging and Vision (2009)" Object

We define a new birth and death dynamics dealing with configurations of disks in the plane. We prove the convergence of the continuous process and propose a discrete scheme converging to the continuous case. This framework is developed to address image processing problems consisting in detecting a configuration of objects from a digital image. The derived algorithm is applied for tree crown extraction and bird detection from aerial images. The performance of this approach is shown on real data.

[1]  Philipp O. J. Scherer,et al.  The Saddle Point Method , 2010 .

[2]  B. Ripley Modelling Spatial Patterns , 1977 .

[3]  D. Aldous Review: Stewart N. Ethier and Thomas G. Kurtz, Markov processes: Characterization and convergence , 1987 .

[4]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[5]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[6]  Robert J. Woodham,et al.  The automatic recognition of individual trees in aerial images of forests based on a synthetic tree crown image model , 1996 .

[7]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[8]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[9]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[10]  F. Gougeon A Crown-Following Approach to the Automatic Delineation of Individual Tree Crowns in High Spatial Resolution Aerial Images , 1995 .

[11]  Josiane Zerubia,et al.  2D and 3D Vegetation Resource Parameters Assessment using Marked Point Processes , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[12]  T. Liggett Interacting Particle Systems , 1985 .

[13]  Josiane Zerubia,et al.  A comparative study of three methods for identifying individual tree crowns in aerial images covering different types of forests , 2006 .

[14]  Yuri Kondratiev,et al.  One-Particle Subspace of the Glauber Dynamics Generator for Continuous Particle Systems , 2004 .

[15]  Josiane Zerubia,et al.  Point processes for unsupervised line network extraction in remote sensing , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Xavier Descombes,et al.  Détection de flamants roses par processus ponctuels marqués pour l'estimation de la taille des populations * Flamingo detection using Marked Point Processes for estimating the size of populations , 2007 .

[17]  Josiane Zerubia,et al.  Building Outline Extraction from Digital Elevation Models Using Marked Point Processes , 2007, International Journal of Computer Vision.

[18]  Michael Reed,et al.  Methods of modern mathematical physics (vol.) I : functional analysis / Reed Michael, Barry Simon , 1980 .

[19]  A. Erdélyi Asymptotic Expansions of Fourier Integrals Involving Logarithmic Singularities , 1956 .

[20]  Josiane Zerubia,et al.  A Gibbs Point Process for Road Extraction from Remotely Sensed Images , 2004, International Journal of Computer Vision.

[21]  Filippo Cesi,et al.  The spectral gap for a Glauber-type dynamics in a continuous gas☆ , 2002 .