Factorization of Polynomials Given by Straight-Line Programs

An algorithm is developed for the factorization of a multivariate polynomial represented by a straight-line program into its irreducible factors. The algorithm is in random polynomial-time as a function in the input size, total degree, and binary coefficient length for the usual coefficient fields and outputs a straight-line program, which with controllably high probability correctly determines the irreducible factors. It also returns the probably correct multiplicities of each distinct factor. If the coefficient field has finite characteristic p and p divides the multiplicities of some irreducible factors our algorithm constructs straight-line programs for the appropriate p-th powers of such factors. Also a probabilistic algorithm is presented that allows to convert a polynomial given by a straightline program into its sparse representation. This conversion algorithm is in random-polynomial time in the previously cited parameters and in an upper bound for the number of non-zero monomials permitted in the sparse output. Together with our factorization algorithm we therefore can probabilistically determine all those sparse irreducible factors of a polynomial given by a straight-line program that have less than a given number of monomials. We show that this result is valid without any restriction on the characteristic of the coefficient field. The first section of this paper also summarizes the history of the polynomial factorization problem, and the last section discusses what questions for this problem remain to be resolved. We hav e also attempted to provide an extensive list of references on the subject, so that this paper can serve as a starting point for someone without previous knowledge in polynomial factorization. 1. The Problem of Factoring Polynomials * This material is based upon work supported by the National Science Foundation under Grant No. DCR-85-04391 and by an IBM Faculty Development Award. The results of §6 were originally announced in the paper “Uniform closure properties of p-computable functions” [32]. This paper appears in Randomness and Computation, edited by S. Micali, vol. 5 of the Advances in Computing Research series, JAI Press Inc., Greenwich, Connecticut, pp. 375-412 (1989).

[1]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[2]  Joachim von zur Gathen Parallel algorithms for algebraic problems , 1983, STOC '83.

[3]  H. Zassenhaus On Hensel factorization, I , 1969 .

[4]  Claus-Peter Schnorr Improved Lower Bounds on the Number of Multiplications/Divisions Which Are Necessary to Evaluate Polynomials , 1977, MFCS.

[5]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[6]  Arjen K. Lenstra Factoring Multivariate Integral Polynomials , 1983, ICALP.

[7]  Joos Heintz,et al.  Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.

[8]  S. Comput,et al.  POLYNOMIAL-TIME REDUCTIONS FROM MULTIVARIATE TO BI- AND UNIVARIATE INTEGRAL POLYNOMIAL FACTORIZATION* , 1985 .

[9]  D. T. Whiteside,et al.  The mathematical works of Isaac Newton , 1964 .

[10]  Joachim von zur Gathen,et al.  Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..

[11]  Barry M. Trager,et al.  Algebraic factoring and rational function integration , 1976, SYMSAC '76.

[12]  C.P. Schnorr Improved Lower Bounds on the Number of Multiplications/Divisions which are Necessary of Evaluate Polynomials , 1978, Theor. Comput. Sci..

[13]  Arjen K. Lenstra,et al.  Lattices and Factorization of Polynomials over Algebraic Number Fields , 1982, EUROCAM.

[14]  Ming-Deh A. Huang Riemann hypothesis and finding roots over finite fields , 1985, STOC '85.

[15]  Erich Kaltofen,et al.  Dagwood: a system for manipulating polynomials given by straight-line programs , 1988, TOMS.

[16]  Richard Y. Kain,et al.  Symbolic factoring of polynomials in several variables , 1966, CACM.

[17]  Erich Kaltofen,et al.  Polynomial-Time Reductions from Multivariate to Bi- and Univariate Integral Polynomial Factorization , 1985, SIAM J. Comput..

[18]  K. Hensel,et al.  Theorie der algebraischen Zahlen , 1908 .

[19]  Richard D. Jenks,et al.  A Primer: 11 Keys to New Scratchpad , 1984, Symbolic and Algebraic Computation.

[20]  KaltofenErich Greatest common divisors of polynomials given by straight-line programs , 1988 .

[21]  Richard Zippel Newton's iteration and the sparse Hensel algorithm (Extended Abstract) , 1981, SYMSAC '81.

[22]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[23]  L. Kronecker Grundzüge einer arithmetischen Theorie der algebraische Grössen. , 2022 .

[24]  Arjen K. Lenstra,et al.  Factoring multivariate polynomials over finite fields , 1983, J. Comput. Syst. Sci..

[25]  Volker Strassen,et al.  Polynomials with Rational Coefficients Which are Hard to Compute , 1974, SIAM J. Comput..

[26]  Joos Heintz,et al.  On Polynomials with Symmetric Galois Group which Are Easy to Compute , 1986, Theor. Comput. Sci..

[27]  Larry J. Stockmeyer,et al.  On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..

[28]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.

[29]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[30]  D. Hilbert,et al.  Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten , 1933 .

[31]  David R. Musser,et al.  Multivariate Polynomial Factorization , 1975, JACM.

[32]  George E. Collins Factoring univariate integral polynomial in polynomial average time , 1979, EUROSAM.

[33]  Erich Kaltofen,et al.  A Generalized Class of Polynomials that are Hard to Factor , 1983, SIAM J. Comput..

[34]  Erich Kaltofen,et al.  Fast Parallel Absolute Irreducibility Testing , 1985, J. Symb. Comput..

[35]  Erich Kaltofen,et al.  A generalized class of polynomials that are hard to factor , 1981, SYMSAC '81.

[36]  E. Berlekamp Factoring polynomials over finite fields , 1967 .

[37]  Billy G. Claybrook A New Approach to the Symbolic Factorization of Multivariate Polynomials , 1976, Artif. Intell..

[38]  Erich Kaltofen Single-factor Hensel lifting and its application to the straight-line complexity of certain polynomials , 1987, STOC '87.

[39]  Erich Kaltofen,et al.  Computing with polynomials given by straight-line programs II sparse factorization , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[40]  Erich Kaltofen,et al.  Greatest common divisors of polynomials given by straight-line programs , 1988, JACM.

[41]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[42]  Erich Kaltofen,et al.  Effective Hilbert Irreducibility , 1984, Inf. Control..

[43]  Erich Kaltofen,et al.  Deterministic Irreducibility Testing of Polynomials over Large Finite Fields , 1987, J. Symb. Comput..

[44]  Oscar H. Ibarra,et al.  Probabilistic Algorithms for Deciding Equivalence of Straight-Line Programs , 1983, JACM.

[45]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[46]  David Y. Y. Yun,et al.  The Hensel Lemma in Algebraic Manipulation , 1973, Outstanding Dissertations in the Computer Sciences.

[47]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[48]  Michael O. Rabin,et al.  Probabilistic Algorithms in Finite Fields , 1980, SIAM J. Comput..

[49]  V. Strassen Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten , 1973 .

[50]  Susan Landau,et al.  Factoring Polynomials Over Algebraic Number Fields , 1985, SIAM J. Comput..

[51]  J. Shepherdson,et al.  Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[52]  Erich Kaltofen,et al.  Uniform closure properties of P-computable functions , 1986, STOC '86.

[53]  Arnold Schönhage Factorization of Univariate Integer Polynomials by Diophantine Aproximation and an Improved Basis Reduction Algorithm , 1984, ICALP.

[54]  J. von zur Gathen Factoring sparse multivariate polynomials , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[55]  Peter J. Weinberger Finding the Number of Factors of a Polynomial , 1984, J. Algorithms.

[56]  Wendy Hall,et al.  The art of programming , 1987 .

[57]  David R. Musser,et al.  On the Efficiency of a Polynomial Irreducibility Test , 1978, JACM.

[58]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[59]  Erich Kaltofen,et al.  A polynomial reduction from multivariate to bivariate integral polynomial factorization. , 1982, STOC '82.

[60]  Lyal B. Harris November , 1890, The Hospital.

[61]  A. O. Gelʹfond Transcendental and Algebraic Numbers , 1960 .