An energy harvester driven by colored noise

This paper presents experiments on a piezoelectric energy harvester driven by broadband vibrations. The energy harvester is investigated both with and without a mechanical end stop that limits proof mass motion. The end stop increases the effective bandwidth at large acceleration amplitudes. For sinusoidal vibrations, the mechanical end stop causes the output power to reach a plateau at a critical acceleration amplitude and does not increase significantly with increasing acceleration amplitude. In contrast, the output power increases with increasing spectral density of the broadband vibration, though at a smaller rate in the presence of an end stop. The optimal load for broadband vibrations is different from either of the two optimal loads for sinusoidal vibrations.

[1]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[2]  Gregory P. Carman,et al.  Broad-Band Vibro-Impacting Energy Harvester , 2010 .

[3]  Y. Naruse,et al.  Electrostatic micro power generation from low-frequency vibration such as human motion , 2009 .

[4]  G. Carman,et al.  A low profile vibro-impacting energy harvester with symmetrical stops , 2010 .

[5]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[6]  H. Wikle,et al.  The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting , 2008 .

[7]  Di Chen,et al.  A MEMS-based piezoelectric power generator array for vibration energy harvesting , 2008, Microelectron. J..

[8]  Tao Dong,et al.  ANALYSIS OF TAPERED BEAM PIEZOELECTRIC ENERGY HARVESTERS , 2008 .

[9]  Ellad B. Tadmor,et al.  Electromechanical coupling correction for piezoelectric layered beams , 2003 .

[10]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .

[11]  George A. Lesieutre,et al.  Can a Coupling Coefficient of a Piezoelectric Device be Higher Than Those of Its Active Material? , 1997, Smart Structures.

[12]  Duy Son Nguyen,et al.  Nonlinear Behavior of an Electrostatic Energy Harvester Under Wide- and Narrowband Excitation , 2010, Journal of Microelectromechanical Systems.

[13]  Du Toit,et al.  Modeling and design of a MEMS piezoelectric vibration energy harvester , 2005 .

[14]  E. Halvorsen Energy Harvesters Driven by Broadband Random Vibrations , 2008, Journal of Microelectromechanical Systems.

[15]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[16]  J. Dugundji,et al.  Modeling and experimental verification of proof mass effects on vibration energy harvester performance , 2010 .

[17]  Bernard H. Stark,et al.  MEMS electrostatic micropower generator for low frequency operation , 2004 .

[18]  E.F. El-Saadany,et al.  A Design Procedure for Wideband Micropower Generators , 2009, Journal of Microelectromechanical Systems.

[19]  Marco Ferrari,et al.  Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems , 2008 .

[20]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[21]  Einar Halvorsen,et al.  Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  Ehab F. El-Saadany,et al.  A wideband vibration-based energy harvester , 2008 .

[23]  P. Wright,et al.  Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload , 2006 .