Quantum states and intertwining phases in kagome materials

In solid materials, nontrivial topological states, electron correlations, and magnetism are central ingredients for realizing quantum properties, including unconventional superconductivity, charge and spin density waves, and quantum spin liquids. The Kagome lattice, made up of connected triangles and hexagons, can host these three ingredients simultaneously and has proven to be a fertile platform for studying diverse quantum phenomena including those stemming from the interplay of these ingredients. In this review, we introduce the fundamental properties of the Kagome lattice as well as discuss the complex observed phenomena seen in several emergent material systems such as the intertwining of charge order and superconductivity in some Kagome metals, modulation of magnetism and topology in some Kagome magnets, and symmetry breaking with Mott physics in the breathing Kagome insulators. We also highlight many open questions in the field as well as future research directions of Kagome systems.

[1]  Ming Liu,et al.  Impact of the orbital current order on the superconducting properties of the kagome superconductors , 2023, Physical Review B.

[2]  Youngkuk Kim,et al.  Monolayer Kagome metals AV3Sb5 , 2022, Nature Communications.

[3]  M. S. Hossain,et al.  Tunable unconventional kagome superconductivity in charge ordered RbV3Sb5 and KV3Sb5 , 2022, Nature Communications.

[4]  M. Fuhrer,et al.  Electrically controlled superconductor-to-failed insulator transition and giant anomalous Hall effect in kagome metal CsV3Sb5 nanoflakes , 2021, Nature Communications.

[5]  Stephen D. Wilson,et al.  Kagome superconductors AV3Sb5 (A = K, Rb, Cs) , 2021, National science review.

[6]  Shama,et al.  Role of electronic correlations in the Kagome lattice superconductor LaRh$_3$B$_2$ , 2022, 2212.02899.

[7]  M Zahid Hasan,et al.  Topological kagome magnets and superconductors. , 2022, Nature.

[8]  T. Yang,et al.  Fermi-level flat band in a kagome magnet , 2022, Quantum Frontiers.

[9]  Jun Yu Li,et al.  Emergent charge order in pressurized kagome superconductor CsV3Sb5 , 2022, Nature.

[10]  Jiangping Hu,et al.  The structure of kagome superconductors AV$_3$Sb$_5$ in the charge density wave states , 2022, 2210.07585.

[11]  S. Wilson,et al.  Microscopic nature of the charge-density wave in kagome superconductor RbV$_3$Sb$_5$ , 2022, 2210.06523.

[12]  C. Felser,et al.  High Resolution Polar Kerr Effect Studies of CsV${}_3$Sb${}_5$: Tests for Time Reversal Symmetry Breaking Below the Charge Order Transition , 2022, 2209.10570.

[13]  D. Graf,et al.  Effect of the Interlayer Ordering on the Fermi Surface of Kagome Superconductor CsV_{3}Sb_{5} Revealed by Quantum Oscillations. , 2022, Physical review letters.

[14]  Xiaoyuan Zhou,et al.  Multiband effects in thermoelectric and electrical transport properties of kagome superconductors AV3Sb5 (A = K, Rb, Cs) , 2022, New Journal of Physics.

[15]  B. Andersen,et al.  Superconductivity from repulsive interactions on the kagome lattice , 2022, Physical Review B.

[16]  Y. Maeno,et al.  Time-reversal symmetry breaking in charge density wave of CsV$_3$Sb$_5$ detected by polar Kerr effect , 2022, 2208.08036.

[17]  D. Shen,et al.  Observation of electronic nematicity driven by three-dimensional charge density wave in kagome lattice KV$_3$Sb$_5$ , 2022, 2208.01499.

[18]  Haitao Yang,et al.  Superconductivity and Unconventional Density Waves in Vanadium-based Kagome Materials AV3Sb5 , 2022, Chinese Physics B.

[19]  H. Weng,et al.  Mottness in two-dimensional van der Waals Nb$_3$X$_8$ monolayers (X=Cl, Br, and I) , 2022, 2207.01471.

[20]  L. Schoop,et al.  Simple Chemical Rules for Predicting Band Structures of Kagome Materials. , 2022, Journal of the American Chemical Society.

[21]  X. Wu,et al.  Tunable topological Dirac surface states and van Hove singularities in kagome metal GdV6Sn6 , 2022, Science advances.

[22]  T. Qian,et al.  Mott insulator state in a van der Waals flat-band compound , 2022, 2205.11462.

[23]  M. Kitamura,et al.  Fermiology and Origin of T_{c} Enhancement in a Kagome Superconductor Cs(V_{1-x}Nb_{x})_{3}Sb_{5}. , 2022, Physical review letters.

[24]  S. Tsirkin,et al.  Low-temperature magnetic crossover in the topological kagome magnet TbMn6Sn6 , 2022, Communications Physics.

[25]  Binghai Yan,et al.  Three-state nematicity and magneto-optical Kerr effect in the charge density waves in kagome superconductors , 2022, Nature Physics.

[26]  Mazhar N. Ali,et al.  Electronic Properties and Phase Transition in the Kagome Metal Yb0.5Co3Ge3 , 2022, Chemistry of Materials.

[27]  T. McQueen,et al.  The field-free Josephson diode in a van der Waals heterostructure , 2022, Nature.

[28]  A. Bostwick,et al.  Discovery of charge density wave in a kagome lattice antiferromagnet , 2022, Nature.

[29]  Anup Pradhan Sakhya,et al.  Spectroscopic evidence of flat bands in breathing kagome semiconductor Nb3I8 , 2022, Communications Materials.

[30]  Christina M. Rost,et al.  A topological kagome magnet in high entropy form , 2022, Communications Physics.

[31]  C. Felser,et al.  Switchable chiral transport in charge-ordered kagome metal CsV3Sb5 , 2022, Nature.

[32]  N. Ghimire,et al.  Magnetization-driven Lifshitz transition and charge-spin coupling in the kagome metal YMn6Sn6 , 2022, Communications Physics.

[33]  Yugui Yao,et al.  Tuning the competition between superconductivity and charge order in kagome superconductor Cs(V1-xNbx)3Sb5 , 2022, 2203.03524.

[34]  Binghai Yan,et al.  Discovery of conjoined charge density waves in the kagome superconductor CsV3Sb5 , 2022, Nature Communications.

[35]  Lingfei Wang,et al.  Emergence of large quantum oscillation frequencies in thin flakes of the kagome superconductor CsV3Sb5, 2022, Physical Review B.

[36]  Jun Yu Li,et al.  Charge-density-wave-driven electronic nematicity in a kagome superconductor , 2022, Nature.

[37]  Binghai Yan,et al.  Exchange-biased topological transverse thermoelectric effects in a Kagome ferrimagnet , 2022, Nature Communications.

[38]  A. Bostwick,et al.  Charge order landscape and competition with superconductivity in kagome metals , 2022, Nature Materials.

[39]  Binghai Yan,et al.  Observation of anomalous amplitude modes in the kagome metal CsV3Sb5 , 2022, Nature Communications.

[40]  Yugui Yao,et al.  Carrier Injection and Manipulation of Charge-Density Wave in Kagome Superconductor CsV3Sb5 , 2022, Physical Review X.

[41]  S. Meng,et al.  Observation of Topological Flat Bands in the Kagome Semiconductor Nb3Cl8. , 2021, Nano letters.

[42]  R. Cava,et al.  LaIr3Ga2: A Superconductor Based on a Kagome Lattice of Ir , 2021, Chemistry of Materials.

[43]  Q. Yin,et al.  Simultaneous formation of two-fold rotation symmetry with charge order in the kagome superconductor CsV3Sb5 by optical polarization rotation measurement , 2021, Physical Review B.

[44]  Tay-Rong Chang,et al.  Topological charge-entropy scaling in kagome Chern magnet TbMn6Sn6 , 2021, Nature Communications.

[45]  Ziqiang Wang,et al.  Chern Fermi pocket, topological pair density wave, and charge-4e and charge-6e superconductivity in kagomé superconductors , 2021, Nature Communications.

[46]  Q. Yin,et al.  Superconductivity in kagome metal YRu3Si2 with strong electron correlations , 2021, Chinese Physics Letters.

[47]  Q. Xue,et al.  Evolution of Electronic Structure in Pristine and Rb-Reconstructed Surfaces of Kagome Metal RbV3Sb5. , 2021, Nano letters.

[48]  R. Zhou,et al.  Possible star-of-David pattern charge density wave with additional modulation in the kagome superconductor CsV3Sb5 , 2021, npj Quantum Materials.

[49]  C. Baines,et al.  Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor , 2021, npj Quantum Materials.

[50]  Yugui Yao,et al.  No observation of chiral flux current in the topological kagome metal CsV3Sb5 , 2021, Physical Review B.

[51]  H. Kontani,et al.  Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs). , 2021, Science advances.

[52]  Xiaoping Zhou,et al.  Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor KV3Sb5 , 2021, Nature Communications.

[53]  M Zahid Hasan,et al.  Time-reversal symmetry-breaking charge order in a kagome superconductor , 2021, Nature.

[54]  R. Thomale,et al.  Rich nature of Van Hove singularities in Kagome superconductor CsV3Sb5 , 2021, Nature communications.

[55]  Stephen D. Wilson,et al.  Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5 , 2021, Nature Physics.

[56]  Stephen D. Wilson,et al.  Role of Sb in the superconducting kagome metal CsV$_3$Sb$_5$ revealed by its anisotropic compression , 2021, SciPost Physics.

[57]  Stephen D. Wilson,et al.  Topological surface states and flat bands in the kagome superconductor CsV3Sb5. , 2021, Science bulletin.

[58]  Jun Yu Li,et al.  Orbital ordering and fluctuations in a kagome superconductor CsV3Sb5 , 2021, Science China Physics, Mechanics & Astronomy.

[59]  Stephen D. Wilson,et al.  Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5 , 2021, Nature Physics.

[60]  Stephen D. Wilson,et al.  Optical detection of the density-wave instability in the kagome metal KV3Sb5 , 2021, npj Quantum Materials.

[61]  Yue Yu Non-uniform vestigial charge-4e phase in the Kagome superconductor CsV 3 Sb 5 , 2022 .

[62]  Stephen D. Wilson,et al.  Realizing Kagome Band Structure in Two-Dimensional Kagome Surface States of RV_{6}Sn_{6} (R=Gd, Ho). , 2021, Physical review letters.

[63]  C. Felser,et al.  Temperature-driven reorganization of electronic order in CsV$_3$Sb$_5$ , 2021, 2112.02559.

[64]  R. Thomale,et al.  Charge order and superconductivity in kagome materials , 2021, Nature Physics.

[65]  M Zahid Hasan,et al.  Structural instability and charge modulations in the kagome superconductor AV3Sb5, 2021, Physical Review B.

[66]  Jian-lin Luo,et al.  Anomalous thermal Hall effect and anomalous Nernst effect of CsV$_{3}$Sb$_{5}$ , 2021, 2111.00727.

[67]  C. Felser,et al.  Anomalous thermoelectric effects and quantum oscillations in the kagome metal CsV$_3$Sb$_5$ , 2021, 2110.13085.

[68]  Jinhua Wang,et al.  Doping evolution of superconductivity, charge order and band topology in hole-doped topological kagome superconductors Cs(V$_{1-x}$Ti$_x$)$_3$Sb$_5$ , 2021, 2110.12651.

[69]  Stephen D. Wilson,et al.  Fermi level tuning and double-dome superconductivity in the kagome metals CsV$_3$Sb$_{5-x}$Sn$_x$ , 2021, 2110.10912.

[70]  Hongjun Gao,et al.  Roton pair density wave in a strong-coupling kagome superconductor , 2021, Nature.

[71]  W. Hao,et al.  Recent Progress on 2D Kagome Magnets: Binary TmSnn (T = Fe, Co, Mn) , 2021, Advanced Quantum Technologies.

[72]  Stephen D. Wilson,et al.  Electronic properties of the topological kagome metals YV6Sn6 and GdV6Sn6 , 2021, Physical Review B.

[73]  Yulin Chen,et al.  Anomalous Hall effect in ferrimagnetic metal RMn6Sn6 (R = Tb, Dy, Ho) with clean Mn kagome lattice , 2021, Applied Physics Letters.

[74]  Yulin Chen,et al.  Charge Density Wave Orders and Enhanced Superconductivity under Pressure in the Kagome Metal CsV3Sb5 , 2021, Advanced materials.

[75]  Q. Yin,et al.  Emergent nematicity and intrinsic versus extrinsic electronic scattering processes in the kagome metal CsV3Sb5< , 2021, Physical Review Research.

[76]  A. Botana,et al.  Tuning the Van Hove singularities in AV3Sb5 (A=K,Rb,Cs) via pressure and doping , 2021, Physical Review B.

[77]  K. Jiang,et al.  Three-Dimensional Charge Density Wave and Surface-Dependent Vortex-Core States in a Kagome Superconductor CsV3Sb5 , 2021, Physical Review X.

[78]  B. Andersen,et al.  Theory of the charge density wave in AV3Sb5 kagome metals , 2021, Physical Review B.

[79]  Yian Ma,et al.  Competition between charge-density-wave and superconductivity in the kagome metal RbV3Sb5 , 2021, Physical Review Research.

[80]  Stephen D. Wilson,et al.  Strain-sensitive superconductivity in the kagome metals KV3Sb5 and CsV3Sb5 probed by point-contact spectroscopy , 2021, Physical Review B.

[81]  Stephen D. Wilson,et al.  Pressure-induced double superconducting domes and charge instability in the kagome metal KV3Sb5 , 2021, Physical Review B.

[82]  Binghai Yan,et al.  Geometry of the charge density wave in the kagome metal AV3Sb5 , 2021, Physical Review B.

[83]  X. H. Chen,et al.  Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal , 2021, Nature Communications.

[84]  Stephen D. Wilson,et al.  Distinct band reconstructions in kagome superconductor CsV$_3$Sb$_5$ , 2021, 2106.01248.

[85]  Q. Yin,et al.  Unconventional charge density wave and photoinduced lattice symmetry change in the kagome metal CsV3Sb5 probed by time-resolved spectroscopy , 2021, Physical Review B.

[86]  Xinfa Chen,et al.  Competition of Superconductivity and Charge Density Wave in Selective Oxidized CsV_{3}Sb_{5} Thin Flakes. , 2021, Physical review letters.

[87]  J. Jia,et al.  Electronic nature of chiral charge order in the kagome superconductor CsV3Sb5 , 2021, Physical Review B.

[88]  Stephen D. Wilson,et al.  Intrinsic nature of chiral charge order in the kagome superconductor RbV3Sb5 , 2021, Physical Review B.

[89]  S. Y. Li,et al.  Double-dome superconductivity under pressure in the V-based Kagome metals AV3Sb5 (A = Rb and K) , 2021, 2104.14487.

[90]  M. Dressel,et al.  Low-energy optical properties of the nonmagnetic kagome metal CsV3Sb5 , 2021, Physical Review B.

[91]  Stephen D. Wilson,et al.  Coherent phonon spectroscopy and interlayer modulation of charge density wave order in the kagome metal CsV3Sb5 , 2021, Physical Review Materials.

[92]  D. Feng,et al.  Multiband Superconductivity with Sign-Preserving Order Parameter in Kagome Superconductor CsV_{3}Sb_{5}. , 2021, Physical review letters.

[93]  L. Balents,et al.  Electronic instabilities of kagome metals: Saddle points and Landau theory , 2021, Physical Review B.

[94]  Yugui Yao,et al.  Multiple energy scales and anisotropic energy gap in the charge-density-wave phase of the kagome superconductor CsV3Sb5 , 2021, Physical Review B.

[95]  Stephen D. Wilson,et al.  Fermi Surface Mapping and the Nature of Charge-Density-Wave Order in the Kagome Superconductor CsV3Sb5 , 2021, Physical Review X.

[96]  Jian-lin Luo,et al.  S-Wave Superconductivity in Kagome Metal CsV3Sb5 Revealed by 121/123Sb NQR and 51V NMR Measurements , 2021, Chinese Physics Letters.

[97]  Yugui Yao,et al.  Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field , 2021, Nature Communications.

[98]  W. Hanke,et al.  Nature of Unconventional Pairing in the Kagome Superconductors AV_{3}Sb_{5} (A=K,Rb,Cs). , 2021, Physical review letters.

[99]  Hongjun Gao,et al.  Distinctive momentum dependent charge-density-wave gap observed in CsV$_3$Sb$_5$ superconductor with topological Kagome lattice , 2021, 2104.05556.

[100]  C. Felser,et al.  Large anomalous Hall effect in the kagome ferromagnet LiMn6Sn6 , 2021, Physical Review B.

[101]  D. Shen,et al.  Charge-Density-Wave-Induced Bands Renormalization and Energy Gaps in a Kagome Superconductor RbV3Sb5 , 2021, Physical Review X.

[102]  Yugui Yao,et al.  Origin of charge density wave in the kagome metal CsV3Sb5 as revealed by optical spectroscopy , 2021, Physical Review B.

[103]  A. Amato,et al.  Nodeless kagome superconductivity in LaRu3Si2 , 2021, Physical Review Materials.

[104]  Jianzhou Zhao,et al.  Electronic correlations in the normal state of the kagome superconductor KV3Sb5 , 2021, Physical Review B.

[105]  R. Thomale,et al.  Analysis of Charge Order in the Kagome Metal AV_{3}Sb_{5} (A=K,Rb,Cs). , 2021, Physical review letters.

[106]  Xiaolong Chen,et al.  Highly Robust Reentrant Superconductivity in CsV3Sb5 under Pressure , 2021, Chinese Physics Letters.

[107]  Xiangde Zhu,et al.  Pressure-induced reemergence of superconductivity in the topological kagome metal CsV3Sb5 , 2021, 2103.12507.

[108]  Stephen D. Wilson,et al.  Nodeless superconductivity in the kagome metal CsV3Sb5 , 2021, Science China Physics, Mechanics & Astronomy.

[109]  B. Lawrie,et al.  Observation of Unconventional Charge Density Wave without Acoustic Phonon Anomaly in Kagome Superconductors AV3Sb5 ( A=Rb , Cs) , 2021, Physical Review X.

[110]  Jiangping Hu,et al.  Chiral flux phase in the Kagome superconductor AV3Sb5. , 2021, Science Bulletin.

[111]  Binghai Yan,et al.  Charge Density Waves and Electronic Properties of Superconducting Kagome Metals. , 2021, Physical review letters.

[112]  Stephen D. Wilson,et al.  Cascade of correlated electron states in the kagome superconductor CsV3Sb5 , 2021, Nature.

[113]  X. H. Chen,et al.  Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal , 2021, Physical Review B.

[114]  Y. Uwatoko,et al.  Double Superconducting Dome and Triple Enhancement of T_{c} in the Kagome Superconductor CsV_{3}Sb_{5} under High Pressure. , 2021, Physical review letters.

[115]  Mingwei Chen,et al.  Twisting of 2D Kagomé Sheets in Layered Intermetallics , 2021, ACS central science.

[116]  H. Hosono,et al.  Field-induced topological Hall effect and double-fan spin structure with a c -axis component in the metallic kagome antiferromagnetic compound YMn6Sn6 , 2021 .

[117]  Stephen D. Wilson,et al.  Unconventional chiral charge order in kagome superconductor KV3Sb5 , 2020, Nature Materials.

[118]  N. Ghimire,et al.  Chiral properties of the zero-field spiral state and field-induced magnetic phases of the itinerant kagome metal YMn6Sn6 , 2020, 2012.13010.

[119]  Stephen D. Wilson,et al.  Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[120]  Qi Wang,et al.  Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6 , 2020, Nature Communications.

[121]  Hui Yang,et al.  Rare Earth Engineering in RMn_{6}Sn_{6} (R=Gd-Tm, Lu) Topological Kagome Magnets. , 2020, Physical review letters.

[122]  Yugui Yao,et al.  Electron-phonon coupling in the charge density wave state of CsV3Sb5 , 2021 .

[123]  Stephen D. Wilson,et al.  Superconductivity in the Z2 kagome metal KV3Sb5 , 2020, 2012.09097.

[124]  E. Toberer,et al.  Anisotropic proximity–induced superconductivity and edge supercurrent in Kagome metal, K1−xV3Sb5 , 2020, Science advances.

[125]  J. Mitchell,et al.  Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6. , 2020, Science advances.

[126]  Stephen D. Wilson,et al.  CsV_{3}Sb_{5}: A Z_{2} Topological Kagome Metal with a Superconducting Ground State. , 2020, Physical review letters.

[127]  J. Chan,et al.  Refine Intervention: Characterizing Disordered Yb0.5Co3Ge3 , 2020 .

[128]  S. Paschen,et al.  Quantum phases driven by strong correlations , 2020, Nature Reviews Physics.

[129]  E. Andrei,et al.  Graphene bilayers with a twist , 2020, Nature Materials.

[130]  Jianzhou Zhao,et al.  Electronic correlations and flattened band in magnetic Weyl semimetal candidate Co3Sn2S2 , 2020, Nature Communications.

[131]  Ying Dai,et al.  Intrinsic anomalous valley Hall effect in single-layer Nb3I8 , 2020 .

[132]  Tay-Rong Chang,et al.  Quantum-limit Chern topological magnetism in TbMn6Sn6 , 2020, Nature.

[133]  Stephen D. Wilson,et al.  Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5 , 2020, Science Advances.

[134]  G. Cantele,et al.  Layer-dependent electronic and magnetic properties of Nb3I8 , 2020 .

[135]  L. Balents,et al.  Superconductivity and strong correlations in moiré flat bands , 2020 .

[136]  E. Bauer,et al.  Anomalous Hall effect in the kagome ferrimagnet GdMn6Sn6 , 2020, 2007.14436.

[137]  A. Bostwick,et al.  Topological flat bands in frustrated kagome lattice CoSn , 2020, Nature Communications.

[138]  D. Shen,et al.  Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn , 2020, Nature Communications.

[139]  T. McQueen,et al.  Anomalous thickness-dependent electrical conductivity in van der Waals layered transition metal halide, Nb3Cl8 , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[140]  D. V. Harlingen,et al.  The Physics of Pair-Density Waves: Cuprate Superconductors and Beyond , 2019, Annual Review of Condensed Matter Physics.

[141]  J. Zou,et al.  The study of magnetic topological semimetals by first principles calculations , 2019, npj Computational Materials.

[142]  Z. K. Liu,et al.  Magnetic Weyl semimetal phase in a Kagomé crystal , 2019, Science.

[143]  Stephen D. Wilson,et al.  New kagome prototype materials: discovery of KV3Sb5,RbV3Sb5 , and CsV3Sb5 , 2019, Physical Review Materials.

[144]  L. Kourkoutis,et al.  Tunable Magnetic Transition to a Singlet Ground State in a 2D Van der Waals Layered Trimerized Kagomé Magnet. , 2019, ACS nano.

[145]  David Graf,et al.  Dirac fermions and flat bands in the ideal kagome metal FeSn , 2019, Nature Materials.

[146]  C. Felser,et al.  Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2 , 2019, Science.

[147]  Naoto Nagaosa,et al.  Topological states on the breathing kagome lattice , 2018, Physical Review B.

[148]  Kyung Hwan Choi,et al.  Structural and Electrical Properties of Nb3I8 Layered Crystal , 2018, physica status solidi (RRL) - Rapid Research Letters.

[149]  Shengbai Zhang,et al.  Flatbands and Emergent Ferromagnetic Ordering in Fe_{3}Sn_{2} Kagome Lattices. , 2018, Physical review letters.

[150]  A. Vishwanath,et al.  Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene , 2018, Physical Review X.

[151]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[152]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[153]  Xi-xiang Zhang,et al.  Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-High Temperature Stability in a Geometrically Confined Nanostripe. , 2018, Nano letters.

[154]  A. Yacoby,et al.  Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond , 2018, 1804.08742.

[155]  Liang Fu,et al.  Massive Dirac fermions in a ferromagnetic kagome metal , 2017, Nature.

[156]  B. Shen,et al.  Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy , 2017, Advanced materials.

[157]  T. Klimczuk,et al.  Magnetism and charge density waves in RNiC2(R=Ce,Pr,Nd) , 2017, 1706.00717.

[158]  Xianping Chen,et al.  Exploration of new ferromagnetic, semiconducting and biocompatible Nb3X8 (X = Cl, Br or I) monolayers with considerable visible and infrared light absorption. , 2017, Nanoscale.

[159]  Manabu Ishikawa,et al.  Magnetic-Nonmagnetic Phase Transition with Interlayer Charge Disproportionation of Nb3 Trimers in the Cluster Compound Nb3Cl8. , 2017, Inorganic chemistry.

[160]  Kefeng Wang,et al.  Magnetic-field-tuned charge density wave in SmNiC2 and NdNiC2 , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[161]  T. McQueen,et al.  Rearrangement of Van-der-Waals Stacking and Formation of a Singlet State at $T = 90$ K in a Cluster Magnet , 2017, 1701.05528.

[162]  Binghai Yan,et al.  Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn , 2016, New Journal of Physics.

[163]  Yong Baek Kim,et al.  Quantum spin liquid in a breathing kagome lattice , 2016, 1605.05322.

[164]  H. Wen,et al.  Chemical doping effect in the LaRu 3 Si 2 superconductor with a kagome lattice , 2016 .

[165]  E. Morosan,et al.  Charge density waves in strongly correlated electron systems , 2016, Reports on progress in physics. Physical Society.

[166]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2016, Nature.

[167]  M. Norman Colloquium : Herbertsmithite and the search for the quantum spin liquid , 2016, 1604.03048.

[168]  Shou-Cheng Zhang,et al.  Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs2LiMn3F12 , 2016 .

[169]  John M. Tranquada,et al.  Colloquium : Theory of intertwined orders in high temperature superconductors , 2014, 1407.4480.

[170]  B Bryant,et al.  Imaging of spin waves in atomically designed nanomagnets. , 2014, Nature materials.

[171]  R. Scalettar,et al.  Superconducting transitions in flat-band systems , 2014, 1404.5482.

[172]  Eli Zeldov,et al.  A scanning superconducting quantum interference device with single electron spin sensitivity. , 2013, Nature nanotechnology.

[173]  R. Thomale,et al.  Unconventional fermi surface instabilities in the kagome Hubbard model. , 2012, Physical review letters.

[174]  Wan-Sheng Wang,et al.  Competing electronic orders on kagome lattices at van Hove filling , 2012, 1208.4925.

[175]  R. Thomale,et al.  Sublattice interference in the kagome Hubbard model , 2012, 1206.6539.

[176]  E. Fradkin Electronic Liquid Crystal Phases in Strongly Correlated Systems , 2010, 1004.1104.

[177]  X. Wan,et al.  Anomalous properties in the normal and superconducting states of LaRu3Si2 , 2011, 1109.2525.

[178]  H. Tsunetsugu,et al.  Conventional and charge-six superfluids from melting hexagonal Fulde-Ferrell-Larkin-Ovchinnikov phases in two dimensions , 2011, 1106.1685.

[179]  Xiao-Gang Wen,et al.  High-temperature fractional quantum Hall states. , 2010, Physical review letters.

[180]  A. Sudbø,et al.  Phase transitions in a three dimensional U(1)×U(1) lattice London superconductor: Metallic superfluid and charge-4e superconducting states , 2010 .

[181]  Q. Si,et al.  Heavy Fermions and Quantum Phase Transitions , 2010, Science.

[182]  C. Chamon,et al.  Isolated flat bands and spin-1 conical bands in two-dimensional lattices , 2010, 1004.0708.

[183]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[184]  E. Fradkin,et al.  Charge-4e superconductivity from pair-density-wave order in certain high-temperature superconductors , 2009, 0904.1230.

[185]  N. Mushnikov,et al.  Double-flat-spiral magnetic structures: Theory and application to the RMn6X6 compounds , 2008 .

[186]  I. I. Mazin,et al.  Fermi surface nesting and the origin of charge density waves in metals , 2007, 0708.1744.

[187]  B. Malaman,et al.  Magnetic properties and 119Sn hyperfine interaction parameters of LiMn6Sn6 , 2006 .

[188]  D. Nocera,et al.  A structurally perfect S = (1/2) kagomé antiferromagnet. , 2005, Journal of the American Chemical Society.

[189]  T. Takabatake,et al.  Direct observation of Fe spin reorientation in single-crystalline YbFe6Ge6 , 2005, cond-mat/0508507.

[190]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[191]  K. Gschneidner,et al.  Magnetic properties of RMn6Sn6 (R=Tb, Ho, Er, Tm, Lu) single crystals , 1999 .

[192]  E. Ressouche,et al.  Magnetic properties of RMn6Sn6 (R = Gd-Er) compounds from neutron diffraction and Mössbauer measurements , 1999 .

[193]  F. D. Boer,et al.  Electrical resistivity of RMn6Ge6 (R=rare earth) compounds , 1999 .

[194]  V. J. Emery,et al.  Electronic liquid-crystal phases of a doped Mott insulator , 1997, Nature.

[195]  Gupta,et al.  Type-II superconductivity in a dilute magnetic system: La1-xTmxRu3Si2. , 1994, Physical review. B, Condensed matter.

[196]  E. Ressouche,et al.  Magnetic structure of YMn6Ge6 and room temperature magnetic structure of LuMn6Sn6 obtained from neutron diffraction study , 1993 .

[197]  Radhakrishna,et al.  Magnetic excitations in the triangular antiferromagnets Mn3Sn and Mn3Ge. , 1993, Physical review. B, Condensed matter.

[198]  F. D. Boer,et al.  155Gd Mössbauer effect and magnetic properties of GdMn6Ge6 , 1993 .

[199]  B. Malaman,et al.  Crystallographic data and magnetic properties of RT6Ge6 compounds (R Sc, Y, Nd, Sm, GdLu; TMn, Fe) , 1992 .

[200]  Anonymous Scanning‐tunneling and atomic‐force microscopy , 1991, Eos, Transactions American Geophysical Union.

[201]  B. Malaman,et al.  MAGNETIC PROPERTIES OF RMN6SN6 (R=SC, Y, GD-TM, LU) COMPOUNDS WITH HFFE6GE6 TYPE STRUCTURE , 1991 .

[202]  G. Grüner,et al.  The dynamics of charge-density waves , 1988 .

[203]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[204]  Malik,et al.  Magnetism and superconductivity in the system Ce1-xLaxRh3B2. , 1985, Physical review. B, Condensed matter.

[205]  C. Varma,et al.  Strong-Coupling Theory of Charge-Density-Wave Transitions , 1983 .

[206]  W. Buchholz,et al.  Intermetallische Phasen mit B35‐Überstruktur und Verwandtschaftsbeziehung zu LiFe6Ge6 , 1981 .

[207]  H. Barz New ternary superconductors with silicon , 1980 .

[208]  G. Meisner,et al.  Superconducting and magnetic properties of new ternary borides with the CeCo3B2-type structure , 1980 .