Thin current sheets with strong bell-shape guide field: Cluster observations and models with beams

Abstract. We study the kinetic structure of intense ion-scale current sheets with strong electron currents and the guide field having a bell-shape profile. We consider four crossings of the Earth magnetotail current sheet by the Cluster mission in 2003. The thickness of these current sheets is about the ion inertial length and significantly smaller than the characteristic ion gyroradius. We analyze the asymmetry of the electron velocity distribution functions and show that the electron current is provided by the small electron subpopulation interpreted as an electron beam or two counter-streaming electron beams. The beam (counter-streaming beams) has a bulk velocity of the order of the electron thermal velocity and a density (difference of beam densities) of about 1–5% of the plasma density. To describe the observed current sheets we develop a kinetic model with particle beams. The model predicts different thickness of the current sheet for different types of current carriers (one electron beam or two counter-streaming electron beams). The observed ion-scale current sheets can be explained assuming that the current is carried by one electron beam and a co-streaming ion beam. Although the ion beam does not carry a significant current, this beam is required to balance the electron current perpendicular to the current sheet neutral plane. The developed model explains the dominance of the electron current and the ion scales of the current sheets.

[1]  S. Kasahara,et al.  Thin current sheets in the Jovian magnetotail , 2014 .

[2]  L. Zelenyi,et al.  Large-amplitude circularly polarized electromagnetic waves in magnetized plasma , 2014 .

[3]  L. Zelenyi,et al.  Kinetic Structure of Current Sheets in the Earth Magnetotail , 2013 .

[4]  M. Roth,et al.  Cross-field flow and electric potential in a plasma slab , 2013 .

[5]  C. Owen,et al.  Current sheet structure and kinetic properties of plasma flows during a near‐Earth magnetic reconnection under the presence of a guide field , 2013 .

[6]  R. Nakamura,et al.  Intense current sheets in the magnetotail: Peculiarities of electron physics , 2013 .

[7]  J. Keyser,et al.  Electric potential differences across auroral generator interfaces , 2013 .

[8]  H. Malova,et al.  Kinetic models of two-dimensional plane and axially symmetric current sheets: Group theory approach , 2013 .

[9]  J. Birn,et al.  Kinetic Model of Electric Potentials in Localized Collisionless Plasma Structures under Steady Quasi-gyrotropic Conditions , 2012 .

[10]  H. Malova,et al.  Kinetic models of current sheets with a sheared magnetic field , 2012 .

[11]  D. Baker,et al.  Particle Acceleration in the Magnetotail and Aurora , 2012 .

[12]  V. Angelopoulos,et al.  Recent advances in understanding substorm dynamics , 2012 .

[13]  M. Dunlop,et al.  Profile of strong magnetic field B y component in magnetotail current sheets. J. Geophys. Res. 117, 6216 , 2012 .

[14]  Wolfgang Baumjohann,et al.  Two types of tangential magnetopause current sheets: Cluster observations and theory , 2011 .

[15]  A. Petrukovich Origins of plasma sheet By , 2011 .

[16]  R. Nakamura,et al.  Embedded current sheets in the Earth’s magnetotail , 2011 .

[17]  A. Artemyev A model of one-dimensional current sheet with parallel currents and normal component of magnetic field , 2011 .

[18]  T. Wiegelmann,et al.  Thin current sheets caused by plasma flow gradients in space and astrophysical plasma , 2010, 1008.2848.

[19]  L. Zelenyi,et al.  Earthward electric field in the magnetotail: Cluster observations and theoretical estimates , 2010 .

[20]  R. Nakamura,et al.  Thin embedded current sheets: Cluster observations of ion kinetic structure and analytical models , 2009 .

[21]  T. Neukirch,et al.  One-dimensional Vlasov-Maxwell equilibrium for the force-free Harris sheet. , 2008, Physical review letters.

[22]  M. Dunlop,et al.  Magnetic configurations of the tilted current sheets in magnetotail , 2008 .

[23]  Helmi Malova,et al.  Flattened current sheet and its evolution in substorms , 2008 .

[24]  Rumi Nakamura,et al.  Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field , 2008 .

[25]  P. Israelevich,et al.  Current carriers in the bifurcated tail current sheet: Ions or electrons? , 2008 .

[26]  Wolfgang Baumjohann,et al.  Dynamics of thin current sheets: Cluster observations , 2007 .

[27]  Rumi Nakamura,et al.  Local structure of the magnetotail current sheet: 2001 Cluster observations , 2006 .

[28]  Wolfgang Baumjohann,et al.  Thin Current Sheets in the Magnetotail Observed by Cluster , 2006 .

[29]  A. Lui,et al.  Reply to comment by V. Génot on “A class of exact two-dimensional kinetic current sheet equilibria” , 2005 .

[30]  Wolfgang Baumjohann,et al.  How typical are atypical current sheets? , 2005 .

[31]  A. Lui,et al.  A class of exact two-dimensional kinetic current sheet equilibria , 2005 .

[32]  A. Lui,et al.  Model of ion‐ or electron‐dominated current sheet , 2004 .

[33]  J. Birn,et al.  Electron acceleration in the dynamic magnetotail: Test particle orbits in three-dimensional magnetohydrodynamic simulation fields , 2004 .

[34]  I. Papamastorakis,et al.  First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment , 2001 .

[35]  M. W. Dunlop,et al.  The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results , 2001 .

[36]  H. Malova,et al.  Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models , 2000 .

[37]  H. Malova,et al.  Thin current sheet embedded within a thicker plasma sheet: Self-consistent kinetic theory , 2000 .

[38]  G. Chanteur Spatial Interpolation for Four Spacecraft: Theory , 1998 .

[39]  Manuel Grande,et al.  PEACE: A PLASMA ELECTRON AND CURRENT EXPERIMENT , 1997 .

[40]  Daniel N. Baker,et al.  Neutral line model of substorms: Past results and present view , 1996 .

[41]  M. Kuznetsova,et al.  Vlasov theory of the equilibrium structure of tangential discontinuities in space plasmas , 1996 .

[42]  Christopher T. Russell,et al.  Structure of the tail plasma/current sheet at ∼11 RE and its changes in the course of a substorm , 1993 .

[43]  Lev M. Zelenyi,et al.  Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion , 1989 .

[44]  C. Russell,et al.  The near‐Earth cross‐tail current sheet: Detailed ISEE 1 and 2 case studies , 1986 .

[45]  L. Burlaga,et al.  The Jovian magnetotail and its current sheet , 1981 .

[46]  D. Fairfield On the average configuraton of the geomagnetic tail , 1979 .

[47]  J. Eastwood The warm current sheet model, and its implications on the temporal behaviour of the geomagnetic tail , 1974 .

[48]  J. Eastwood Consistency of fields and particle motion in the ‘Speiser’ model of the current sheet , 1972 .

[49]  Norman F. Ness,et al.  The geomagnetic tail. , 1969 .

[50]  L. J. Cahill,et al.  Explorer 12 observations of the magnetopause current layer , 1968 .

[51]  B. Sonnerup,et al.  Large Amplitude Whistler Waves in a Hot Collision‐Free Plasma , 1967 .

[52]  R. Lutomirski,et al.  Exact nonlinear electromagnetic whistler modes. , 1966 .

[53]  T. Bell NONLINEAR ALFVEN WAVES IN A VLASOV PLASMA , 1965 .

[54]  T. Speiser Particle trajectories in model current sheets: 1. Analytical solutions , 1965 .

[55]  N. Ness THE EARTH'S MAGNETIC TAIL* , 1965 .

[56]  E. G. Harris On a plasma sheath separating regions of oppositely directed magnetic field , 1962 .