A novel training weighted ensemble (TWE) with application to face recognition

Individual classifiers that are fully trained are unstable especially when the database conditions are changed. Moreover, designing a unique classifier with the suitable parameters to achieve acceptable performance is a non-trivial task. Combined classifiers, which consist of a set of individually trained classifiers, are introduced to avoid the previous problems. There are two key issues in the combination of classifiers. The first issue is how to obtain the set of base classifiers to combine. The second issue is how to fuse the decisions of those classifiers. In this paper, weak Learning Vector Quantization (LVQ) neural networks have been used as base classifiers. Also, a new combination technique which is based on training-weighted voting is introduced. Other factors that greatly affect the performance of a combined classifier are related to the type of the individual classifiers, the training parameters, database size and nature, etc. These factors have been considered in the design of the proposed combined classifier. TWE has been experimentally tested on five standard face databases: Yale, ORL, Grimace, Faces94 and Faces95 and has demonstrated excellent performance. Analysis of the ensemble stability has shown promising results.

[1]  Ahmad S. Tolba,et al.  A PARAMETER-BASED COMBINED CLASSIFIER FOR INVARIANT FACE RECOGNITION , 2000, Cybern. Syst..

[2]  Roberto Battiti,et al.  Democracy in neural nets: Voting schemes for classification , 1994, Neural Networks.

[3]  Jun Zhang,et al.  Pace recognition: eigenface, elastic matching, and neural nets , 1997, Proc. IEEE.

[4]  Robert E. Schapire,et al.  Theoretical Views of Boosting , 1999, EuroCOLT.

[5]  Thomas G. Dietterich Machine-Learning Research , 1997, AI Mag..

[6]  Hazem M. Raafat,et al.  Committee machines for facial-gender recognition , 2009, Int. J. Hybrid Intell. Syst..

[7]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Ferdinando Samaria,et al.  Face Segmentation For Identification Using Hidden Markov Models , 1993, BMVC.

[9]  Vasile Palade,et al.  Multi-Classifier Systems: Review and a roadmap for developers , 2006, Int. J. Hybrid Intell. Syst..

[10]  Xiuzhen Cheng,et al.  A Simple Implementation of the Stochastic Discrimination for Pattern Recognition , 2000, SSPR/SPR.

[11]  Xiaojun Wu,et al.  A complete fuzzy discriminant analysis approach for face recognition , 2010, Appl. Soft Comput..

[12]  Olivier Debeir,et al.  Combining Different Methods and Numbers of Weak Decision Trees , 2002, Pattern Analysis & Applications.

[13]  Feihu Qi,et al.  Face Recognition with Improved Pairwise Coupling Support Vector Machines , 2002, IWANN.

[14]  Gang Hua,et al.  Face Recognition by Discriminative Orthogonal Rank-one Tensor Decomposition , 2008 .

[15]  M. Perrone Improving regression estimation: Averaging methods for variance reduction with extensions to general convex measure optimization , 1993 .

[16]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[17]  Chris Eliasmith,et al.  Neural Engineering , 2020 .

[18]  Alain Rakotomamonjy,et al.  Ensemble of SVMs for Improving Brain Computer Interface P300 Speller Performances , 2005, ICANN.

[19]  Kazuhiko Yamamoto,et al.  Structured Document Image Analysis , 1992, Springer Berlin Heidelberg.

[20]  Simon M. Lucas,et al.  Face recognition with the continuous n-tuple classifier , 1998, BMVC.

[21]  E. M. Kleinberg,et al.  Stochastic discrimination , 1990, Annals of Mathematics and Artificial Intelligence.

[22]  Chuanyi Ji,et al.  Combinations of Weak Classifiers , 1996, NIPS.

[23]  Juan Humberto Sossa Azuela,et al.  Object recognition by indexing using neural networks , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[24]  Sargur N. Srihari,et al.  Combination of Decisions by Multiple Classifiers , 1992 .

[25]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[26]  Paul Fischer,et al.  Proceedings of the 4th European Conference on Computational Learning Theory , 1999 .

[27]  Ethem Alpaydin,et al.  Combining Multiple Representations for Pen-based Handwritten Digit Recognition , 2001 .

[28]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[29]  Marian Stewart Bartlett,et al.  Recent Advances in Face Recognition , 2008 .

[30]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[31]  Robert P. W. Duin,et al.  Experiments with Classifier Combining Rules , 2000, Multiple Classifier Systems.

[32]  Anil K. Jain,et al.  Integrating Faces and Fingerprints for Personal Identification , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Tin Kam Ho,et al.  Data Complexity Analysis for Classifier Combination , 2001, Multiple Classifier Systems.

[34]  Cong Geng,et al.  SIFT features for face recognition , 2009, 2009 2nd IEEE International Conference on Computer Science and Information Technology.

[35]  Steve Verrill Confidence bounds for normal and lognormal distribution coefficients of variation , 2003 .

[36]  U. Hoffmann,et al.  A Boosting Approach to P300 Detection with Application to Brain-Computer Interfaces , 2005, Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005..

[37]  Monson H. Hayes,et al.  A hidden markov model-based approach for face detection and recognition , 1999 .

[38]  B. Yegnanarayana,et al.  Artificial Neural Networks , 2004 .

[39]  Wang Xueguang,et al.  Study on algorithm of access control system based on face recognition , 2009, 2009 ISECS International Colloquium on Computing, Communication, Control, and Management.

[40]  Modesto Castrillón,et al.  Face recognition using independent component analysis and support vector machines , 2003 .

[41]  M. Kamel,et al.  Voting schemes for cooperative neural network classifiers , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[42]  Michael R. Lyu,et al.  Face recognition committee machine , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[43]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1994 .

[44]  Rahim Mahmoudvand,et al.  Is The Sample Coefficient Of Variation A Good Estimator For The Population Coefficient Of Variation , 2007 .

[45]  Thomas G. Dietterich,et al.  Error-Correcting Output Coding Corrects Bias and Variance , 1995, ICML.

[46]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Rabab K. Ward,et al.  Multiresolution Methods in Face Recognition , 2008 .

[48]  Abdul Nasser S. Abu-Rezq,et al.  Combined Classifiers for Invariant Face Recognition , 2000, Pattern Analysis & Applications.

[49]  Jin Hyung Kim,et al.  Face Recognition using Support Vector Machines with Local Correlation Kernels , 2002, Int. J. Pattern Recognit. Artif. Intell..

[50]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[51]  Ales Leonardis,et al.  Recognizing 2-tone images in grey-level parametric eigenspaces , 2002, Pattern Recognit. Lett..

[52]  Monson H. Hayes,et al.  Hidden Markov models for face recognition , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[53]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[54]  Robert P. W. Duin,et al.  Bagging, Boosting and the Random Subspace Method for Linear Classifiers , 2002, Pattern Analysis & Applications.

[55]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[56]  Fuad Rahman,et al.  A pair-wise decision fusion framework: recognition of human faces , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[57]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  Sun-Yuan Kung,et al.  Face recognition/detection by probabilistic decision-based neural network , 1997, IEEE Trans. Neural Networks.

[59]  Xiaoyang Tan,et al.  Pattern Recognition , 2016, Communications in Computer and Information Science.

[60]  M. Pazzani,et al.  Error Reduction through Learning Multiple Descriptions , 1996, Machine Learning.

[61]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[63]  Anil K. Jain,et al.  Combining classifiers for face recognition , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[64]  Ah Chung Tsoi,et al.  Face recognition: a convolutional neural-network approach , 1997, IEEE Trans. Neural Networks.

[65]  Xudong Jiang,et al.  Eigenfeature Regularization and Extraction in Face Recognition , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[67]  Vladimir Pavlovic,et al.  A hybrid face recognition method using Markov random fields , 2004, ICPR 2004.