Protein folding and molecular chaperones in archaea.

[1]  E. Conway de Macario,et al.  The molecular chaperone system and other anti-stress mechanisms in archaea. , 2001, Frontiers in bioscience : a journal and virtual library.

[2]  C. Gross,et al.  The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity , 2001, The EMBO journal.

[3]  J. Carrascosa,et al.  Structural comparison of prokaryotic and eukaryotic chaperonins. , 2001, Micron.

[4]  J. Cupp-Vickery,et al.  Crystal structure of Hsc20, a J-type Co-chaperone from Escherichia coli. , 2000, Journal of molecular biology.

[5]  M. Wiedmann,et al.  The α and β Subunit of the Nascent Polypeptide-associated Complex Have Distinct Functions* , 2000, The Journal of Biological Chemistry.

[6]  M van Heel,et al.  Structure of the AAA ATPase p97. , 2000, Molecular cell.

[7]  S. Radford,et al.  Protein folding: progress made and promises ahead. , 2000, Trends in biochemical sciences.

[8]  I Rouiller,et al.  A major conformational change in p97 AAA ATPase upon ATP binding. , 2000, Molecular cell.

[9]  L Rensing,et al.  Chaperones in cell cycle regulation and mitogenic signal transduction: a review , 2000, Cell proliferation.

[10]  Zhaohui Xu,et al.  Crystal structure of the bacterial protein export chaperone SecB , 2000, Nature Structural Biology.

[11]  T. Thomas,et al.  Cold stress response in Archaea , 2000, Extremophiles.

[12]  J Martín-Benito,et al.  Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi‐native conformations , 2000, The EMBO journal.

[13]  F. Hartl,et al.  Structure of the Molecular Chaperone Prefoldin Unique Interaction of Multiple Coiled Coil Tentacles with Unfolded Proteins , 2000, Cell.

[14]  Christine B. Trame,et al.  Crystal and Solution Structures of an HslUV Protease–Chaperone Complex , 2000, Cell.

[15]  A. Goldberg,et al.  PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone , 2000, Nature Cell Biology.

[16]  Jan Löwe,et al.  Crystal structure of the cell division protein FtsA from Thermotoga maritima , 2000, The EMBO journal.

[17]  J. Glass,et al.  The complete sequence of the mucosal pathogen Ureaplasma urealyticum , 2000, Nature.

[18]  C. Vivarès,et al.  Towards the minimal eukaryotic parasitic genome. , 2000, Current opinion in microbiology.

[19]  E. Candido,et al.  Association of several small heat-shock proteins with reproductive tissues in the nematode Caenorhabditis elegans. , 2000, The Biochemical journal.

[20]  Dmitrij Frishman,et al.  The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum , 2000, Nature.

[21]  J. Mašín,et al.  Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. , 2000, The Plant journal : for cell and molecular biology.

[22]  V. Sheffield,et al.  Mutations in MKKS cause Bardet-Biedl syndrome , 2000, Nature Genetics.

[23]  Richard A. Lewis,et al.  Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl syndrome , 2000, Nature Genetics.

[24]  M. Rossi,et al.  Oxygen: friend or foe? Archaeal superoxide dismutases in the protection of intra- and extracellular oxidative stress. , 2000, Frontiers in bioscience : a journal and virtual library.

[25]  E. Conway de Macario,et al.  Stressors, stress and survival: overview. , 2000, Frontiers in bioscience : a journal and virtual library.

[26]  P. Engel,et al.  Protein stability in extremophilic archaea. , 2000, Frontiers in bioscience : a journal and virtual library.

[27]  W. Baumeister,et al.  Crystal structure of the beta-apical domain of the thermosome reveals structural plasticity in the protrusion region. , 2000, Journal of molecular biology.

[28]  W. Baumeister,et al.  ATPase cycle controls the conformation of an archaeal chaperonin as visualized by cryo‐electron microscopy , 2000, FEBS letters.

[29]  Ronald D. Vale,et al.  Aaa Proteins , 2000, The Journal of cell biology.

[30]  Lorna J. Smith,et al.  Understanding protein folding via free-energy surfaces from theory and experiment. , 2000, Trends in biochemical sciences.

[31]  W. Baumeister,et al.  ATPase cycle of an archaeal chaperonin. , 2000, Journal of molecular biology.

[32]  K. Kim,et al.  A thioredoxin from the hyperthermophilic archaeon Methanococcus jannaschii has a glutaredoxin-like fold but thioredoxin-like activities. , 2000, Biochemistry.

[33]  F. Baneyx,et al.  ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells , 2000, Molecular microbiology.

[34]  J. Eichler Archaeal protein translocation crossing membranes in the third domain of life. , 2000, European journal of biochemistry.

[35]  M. Bader,et al.  DsbG, a Protein Disulfide Isomerase with Chaperone Activity* , 2000, The Journal of Biological Chemistry.

[36]  T. Langer,et al.  AAA proteases: cellular machines for degrading membrane proteins. , 2000, Trends in biochemical sciences.

[37]  Z. Chang,et al.  Probing the Roles of the Only Universally Conserved Leucine Residue (Leu122) in the Oligomerization and Chaperone-like Activity of Mycobacterium tuberculosis Small Heat Shock Protein Hsp16.3 , 2000, Journal of protein chemistry.

[38]  G. Bouffard,et al.  Mutation of a gene encoding a putative chaperonin causes McKusick-Kaufman syndrome , 2000, Nature Genetics.

[39]  W. Doolittle,et al.  Horizontal transfer of catalase-peroxidase genes between archaea and pathogenic bacteria. , 2000, Trends in genetics : TIG.

[40]  P. Stewart,et al.  Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. , 2000, Journal of molecular biology.

[41]  B. Bukau,et al.  The heat shock response of Escherichia coli. , 2000, International journal of food microbiology.

[42]  J. Heikkila,et al.  Functional characterization of Xenopus small heat shock protein, Hsp30C: the carboxyl end is required for stability and chaperone activity , 2000, Cell stress & chaperones.

[43]  H. Saibil,et al.  Molecular chaperones: containers and surfaces for folding, stabilising or unfolding proteins. , 2000, Current opinion in structural biology.

[44]  F. Hartl,et al.  Protein folding: Versatility of the cytosolic chaperonin TRiC/CCT , 2000, Current Biology.

[45]  W. Baumeister,et al.  Conformational rearrangements of an archaeal chaperonin upon ATPase cycling , 2000, Current Biology.

[46]  H. Aldrich,et al.  Biochemical and Physical Properties of the Methanococcus jannaschii 20S Proteasome and PAN, a Homolog of the ATPase (Rpt) Subunits of the Eucaryal 26S Proteasome , 2000, Journal of bacteriology.

[47]  K. Furtak,et al.  Multivalent Binding of Nonnative Substrate Proteins by the Chaperonin GroEL , 2000, Cell.

[48]  M. Wilson,et al.  Clusterin is a secreted mammalian chaperone. , 2000, Trends in biochemical sciences.

[49]  Robert Huber,et al.  The structures of HslU and the ATP-dependent protease HslU–HslV , 2000, Nature.

[50]  A. Minton Implications of macromolecular crowding for protein assembly. , 2000, Current opinion in structural biology.

[51]  J. Horwitz The function of alpha-crystallin in vision. , 2000, Seminars in cell & developmental biology.

[52]  G. Fischer,et al.  Enzymes that catalyse the restructuring of proteins. , 2000, Current opinion in structural biology.

[53]  J. Frydman,et al.  Protein folding in vivo: the importance of molecular chaperones. , 2000, Current opinion in structural biology.

[54]  John I. Clark,et al.  Small heat-shock proteins and their potential role in human disease. , 2000, Current opinion in structural biology.

[55]  K. Ferrell,et al.  Regulatory subunit interactions of the 26S proteasome, a complex problem. , 2000, Trends in biochemical sciences.

[56]  S. Hultgren,et al.  PapD-like chaperones and pilus biogenesis. , 2000, Seminars in cell & developmental biology.

[57]  T. Maruyama,et al.  FK506 binding protein from a thermophilic archaeon, Methanococcus thermolithotrophicus, has chaperone-like activity in vitro. , 2000, Biochemistry.

[58]  Long-Fei Wu,et al.  Discrimination between SRP‐ and SecA/SecB‐dependent substrates involves selective recognition of nascent chains by SRP and trigger factor , 2000, The EMBO journal.

[59]  A. Kuhn,et al.  Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins. , 2000, Annual review of cell and developmental biology.

[60]  P. Sigler,et al.  The Crystal Structure of a GroEL/Peptide Complex Plasticity as a Basis for Substrate Diversity , 1999, Cell.

[61]  S. Rüdiger,et al.  Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB , 1999, The EMBO journal.

[62]  Julie Grantham,et al.  Eukaryotic type II chaperonin CCT interacts with actin through specific subunits , 1999, Nature.

[63]  S. Gottesman,et al.  Posttranslational quality control: folding, refolding, and degrading proteins. , 1999, Science.

[64]  A Helenius,et al.  Setting the standards: quality control in the secretory pathway. , 1999, Science.

[65]  M. FaguyDavid,et al.  Genomics: Lessons from the Aeropyrum pernix genome , 1999, Current Biology.

[66]  B. Ahring,et al.  Stress Genes and Proteins in the Archaea , 1999, Microbiology and Molecular Biology Reviews.

[67]  H. Saibil,et al.  Hsp26: a temperature‐regulated chaperone , 1999, The EMBO journal.

[68]  C. Dobson,et al.  MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin , 1999, The EMBO journal.

[69]  Dmitrij Frishman,et al.  Identification of in vivo substrates of the chaperonin GroEL , 1999, Nature.

[70]  M. Maurizi,et al.  ClpA and ClpP remain associated during multiple rounds of ATP-dependent protein degradation by ClpAP protease. , 1999, Biochemistry.

[71]  W. Baumeister,et al.  Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. , 1999, Journal of molecular biology.

[72]  H. Kessler,et al.  The solution structure of VAT-N reveals a ‘missing link’ in the evolution of complex enzymes from a simple βαββ element , 1999, Current Biology.

[73]  John I. Clark,et al.  ATP and the Core “α-Crystallin” Domain of the Small Heat-shock Protein αB-crystallin* , 1999, The Journal of Biological Chemistry.

[74]  N. Pfanner Protein folding: Who chaperones nascent chains in bacteria? , 1999, Current Biology.

[75]  J. Brodsky,et al.  ER protein quality control and proteasome-mediated protein degradation. , 1999, Seminars in cell & developmental biology.

[76]  M. Zółkiewski,et al.  ClpB Cooperates with DnaK, DnaJ, and GrpE in Suppressing Protein Aggregation , 1999, The Journal of Biological Chemistry.

[77]  W. Doolittle,et al.  Recurrent paralogy in the evolution of archaeal chaperonins , 1999, Current Biology.

[78]  Hitoshi Nakamoto,et al.  HtpG is essential for the thermal stress management in cyanobacteria , 1999, FEBS letters.

[79]  A. Goldberg,et al.  An Archaebacterial ATPase, Homologous to ATPases in the Eukaryotic 26 S Proteasome, Activates Protein Breakdown by 20 S Proteasomes* , 1999, The Journal of Biological Chemistry.

[80]  A. Horwich,et al.  Global unfolding of a substrate protein by the Hsp100 chaperone ClpA , 1999, Nature.

[81]  S. Bron,et al.  Signal Peptide Peptidase- and ClpP-like Proteins ofBacillus subtilis Required for Efficient Translocation and Processing of Secretory Proteins* , 1999, The Journal of Biological Chemistry.

[82]  T. Oshima,et al.  Structural Conservation of the Isolated Zinc Site in Archaeal Zinc-containing Ferredoxins as Revealed by X-ray Absorption Spectroscopic Analysis and Its Evolutionary Implications* 210 , 1999, The Journal of Biological Chemistry.

[83]  V. Stojanoff,et al.  X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. , 1999, Science.

[84]  G. Waksman,et al.  Structural basis of chaperone function and pilus biogenesis. , 1999, Science.

[85]  B. Bukau,et al.  Trigger factor and DnaK cooperate in folding of newly synthesized proteins , 1999, Nature.

[86]  P. Kloetzel,et al.  The base of the proteasome regulatory particle exhibits chaperone-like activity , 1999, Nature Cell Biology.

[87]  E. Conway de Macario,et al.  The archaeal molecular chaperone machine: peculiarities and paradoxes. , 1999, Genetics.

[88]  W. Whitman,et al.  Genetics of Methanococcus: possibilities for functional genomics in Archaea , 1999, Molecular microbiology.

[89]  K. Misura,et al.  Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein , 1999, Nature Cell Biology.

[90]  S. Radford,et al.  GroEL accelerates the refolding of hen lysozyme without changing its folding mechanism , 1999, Nature Structural Biology.

[91]  Michael Radermacher,et al.  3D reconstruction of the ATP-bound form of CCT reveals the asymmetric folding conformation of a type II chaperonin , 1999, Nature Structural Biology.

[92]  Doolittle Wf Phylogenetic Classification and the Universal Tree , 1999 .

[93]  Hong Wang,et al.  High-resolution solution structure of the 18 kDa substrate-binding domain of the mammalian chaperone protein Hsc70. , 1999, Journal of molecular biology.

[94]  F. Hartl,et al.  Polypeptide Flux through Bacterial Hsp70 DnaK Cooperates with Trigger Factor in Chaperoning Nascent Chains , 1999, Cell.

[95]  John I. Clark,et al.  Site-directed mutations within the core “α-crystallin” domain of the small heat-shock protein, human αB-crystallin, decrease molecular chaperone functions , 1999 .

[96]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[97]  Jimin Wang,et al.  New insights into the ATP‐dependent Clp protease: Escherichia coli and beyond , 1999, Molecular microbiology.

[98]  S W Englander,et al.  Chaperonin function: folding by forced unfolding. , 1999, Science.

[99]  W. Kelley Molecular chaperones: How J domains turn on Hsp70s , 1999, Current Biology.

[100]  W. Welch,et al.  Prefoldin–Nascent Chain Complexes in the Folding of Cytoskeletal Proteins , 1999, The Journal of cell biology.

[101]  H. Söling,et al.  The protein disulphide-isomerase family: unravelling a string of folds. , 1999, The Biochemical journal.

[102]  M. Marahiel,et al.  Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts , 1999, Cellular and Molecular Life Sciences CMLS.

[103]  U. Jakob,et al.  Chaperone Activity with a Redox Switch , 1999, Cell.

[104]  F. Hartl,et al.  Principles of protein folding in the cellular environment. , 1999, Current opinion in structural biology.

[105]  K. Strub,et al.  New Insights into Signal Recognition and Elongation Arrest Activities of the Signal Recognition Particle , 1999, Biological chemistry.

[106]  E. Conway de Macario,et al.  Discontinuous Occurrence of the hsp70(dnaK) Gene among Archaea and Sequence Features of HSP70 Suggest a Novel Outlook on Phylogenies Inferred from This Protein , 1999, Journal of bacteriology.

[107]  W. Baumeister,et al.  The Janus Face of the Archaeal Cdc48/p97 Homologue VAT: Protein Folding versus Unfolding , 1999, Biological chemistry.

[108]  A. Shevchenko,et al.  Compartmentation of protein folding in vivo: sequestration of non‐native polypeptide by the chaperonin–GimC system , 1999, The EMBO journal.

[109]  Judith Frydman,et al.  In vivo newly translated polypeptides are sequestered in a protected folding environment , 1999, The EMBO journal.

[110]  Toshihiro Tanaka,et al.  Complete Genome Sequence of an Aerobic Hyper-thermophilic Crenarchaeon, Aeropyrum pernix K1 (Supplement) , 1999 .

[111]  Y. Kawarabayasi,et al.  Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.

[112]  G. Schäfer,et al.  Domain structure, GTP-hydrolyzing activity and 7S RNA binding of Acidianus ambivalens ffh-homologous protein suggest an SRP-like complex in archaea. , 1999, European journal of biochemistry.

[113]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[114]  R. W. Davis,et al.  Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. , 1998, Science.

[115]  F. Baneyx,et al.  Roles of the Escherichia coli Small Heat Shock Proteins IbpA and IbpB in Thermal Stress Management: Comparison with ClpA, ClpB, and HtpG In Vivo , 1998, Journal of bacteriology.

[116]  E. Craig,et al.  Zuotin, a ribosome‐associated DnaJ molecular chaperone , 1998, The EMBO journal.

[117]  Sung-Hou Kim,et al.  Crystal structure of a small heat-shock protein , 1998, Nature.

[118]  P. Csermely,et al.  Associate Editor: D. Shugar The 90-kDa Molecular Chaperone Family: Structure, Function, and Clinical Applications. A Comprehensive Review , 1998 .

[119]  M. Wiedmann,et al.  The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome–nascent chain complex , 1998, The EMBO journal.

[120]  S. Lindquist,et al.  Hsp104, Hsp70, and Hsp40 A Novel Chaperone System that Rescues Previously Aggregated Proteins , 1998, Cell.

[121]  R. Ladenstein,et al.  A protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus contains two thioredoxin fold units , 1998, Nature Structural Biology.

[122]  W. Kelley,et al.  The J-domain family and the recruitment of chaperone power. , 1998, Trends in biochemical sciences.

[123]  J. Vandekerckhove,et al.  Prefoldin, a Chaperone that Delivers Unfolded Proteins to Cytosolic Chaperonin , 1998, Cell.

[124]  A. Steven,et al.  Enzymatic and Structural Similarities between theEscherichia coli ATP-dependent Proteases, ClpXP and ClpAP* , 1998, The Journal of Biological Chemistry.

[125]  W. Doolittle,et al.  Cytoskeletal proteins: The evolution of cell division , 1998, Current Biology.

[126]  J. Buchner,et al.  The Small Heat-shock Protein IbpB from Escherichia coli Stabilizes Stress-denatured Proteins for Subsequent Refolding by a Multichaperone Network* , 1998, The Journal of Biological Chemistry.

[127]  K. Willison,et al.  ATP Binding Induces Large Conformational Changes in the Apical and Equatorial Domains of the Eukaryotic Chaperonin Containing TCP-1 Complex* , 1998, The Journal of Biological Chemistry.

[128]  C. Tsou,et al.  Enzymes as chaperones and chaperones as enzymes , 1998, FEBS letters.

[129]  Robert Huber,et al.  Crystal Structure of the Thermosome, the Archaeal Chaperonin and Homolog of CCT , 1998, Cell.

[130]  A. Driessen,et al.  The Sec system. , 1998, Current opinion in microbiology.

[131]  N. Ohara,et al.  The 16-kDa alpha-crystallin-like protein of Mycobacterium bovis BCG is produced under conditions of oxygen deficiency and is associated with ribosomes. , 1998, Research in Microbiology.

[132]  R. Huber,et al.  The complete genome of the hyperthermophilic bacterium Aquifex aeolicus , 1998, Nature.

[133]  M. Mayer,et al.  Hsp70 chaperone systems: diversity of cellular functions and mechanism of action. , 1998, Biological chemistry.

[134]  J. Buchner,et al.  How chaperones fold proteins. , 1998, Biological chemistry.

[135]  K. Siegers,et al.  A novel protein complex promoting formation of functional α‐ and γ‐tubulin , 1998, The EMBO journal.

[136]  Bernd Bukau,et al.  The Hsp70 and Hsp60 Chaperone Machines , 1998, Cell.

[137]  M. Latterich,et al.  The AAA team: related ATPases with diverse functions. , 1998, Trends in cell biology.

[138]  L. Amos,et al.  Crystal structure of the bacterial cell-division protein FtsZ , 1998, Nature.

[139]  R. Ladenstein,et al.  Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. , 1998, Advances in biochemical engineering/biotechnology.

[140]  A. Horwich,et al.  Structure and function in GroEL-mediated protein folding. , 1998, Annual review of biochemistry.

[141]  Jon Beckwith,et al.  Protein Translocation in the Three Domains of Life: Variations on a Theme , 1997, Cell.

[142]  W. Baumeister,et al.  Structure of the Substrate Binding Domain of the Thermosome, an Archaeal Group II Chaperonin , 1997, Cell.

[143]  M. Leroux,et al.  Structure-Function Studies on Small Heat Shock Protein Oligomeric Assembly and Interaction with Unfolded Polypeptides* , 1997, The Journal of Biological Chemistry.

[144]  A. Horwich,et al.  Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL , 1997, Nature.

[145]  J. Churchich Conformational Changes at the Nucleotide Binding of GroEL Induced by Binding of Protein Substrates , 1997, The Journal of Biological Chemistry.

[146]  Walid A Houry,et al.  In Vivo Observation of Polypeptide Flux through the Bacterial Chaperonin System , 1997, Cell.

[147]  B. Ahring,et al.  Heat-Shock Response in Methanosarcina mazei S-6 , 1997, Current Microbiology.

[148]  K. Willison,et al.  Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro‐complexes , 1997, The EMBO journal.

[149]  A. Pahl,et al.  Fit for life? Evolution of chaperones and folding catalysts parallels the development of complex organisms. , 1997, Cell stress & chaperones.

[150]  M Karplus,et al.  The Levinthal paradox: yesterday and today. , 1997, Folding & design.

[151]  R. Williams,et al.  Cytoplasmic chaperonin containing TCP-1: structural and functional characterization. , 1997, Biochemistry.

[152]  M. Leroux,et al.  Unique Structural Features of a Novel Class of Small Heat Shock Proteins* , 1997, The Journal of Biological Chemistry.

[153]  J. Morrow,et al.  Proteins containing non‐native disulfide bonds generated by oxidative stress can act as signals for the induction of the heat shock response , 1997, Journal of cellular physiology.

[154]  J Kuriyan,et al.  Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. , 1997, Science.

[155]  R. Huber,et al.  Structure of 20S proteasome from yeast at 2.4Å resolution , 1997, Nature.

[156]  L. Grivell,et al.  ATP-dependent proteases that also chaperone protein biogenesis. , 1997, Trends in biochemical sciences.

[157]  A. Horwich,et al.  GroEL‐Mediated protein folding , 1997, Protein science : a publication of the Protein Society.

[158]  S. Gottesman,et al.  Protein quality control: triage by chaperones and proteases. , 1997, Genes & development.

[159]  Bernd Bukau,et al.  Substrate specificity of the DnaK chaperone determined by screening cellulose‐bound peptide libraries , 1997, The EMBO journal.

[160]  J Osipiuk,et al.  Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. , 1997, Structure.

[161]  Garrett J. Lee,et al.  A small heat shock protein stably binds heat‐denatured model substrates and can maintain a substrate in a folding‐competent state , 1997, The EMBO journal.

[162]  M. Gaestel,et al.  Binding of non‐native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation , 1997, The EMBO journal.

[163]  R. Morimoto,et al.  The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. , 1997, Essays in biochemistry.

[164]  F. Schmid,et al.  Cooperation of enzymatic and chaperone functions of trigger factor in the catalysis of protein folding , 1997, The EMBO journal.

[165]  B. Bukau,et al.  Growing up in a dangerous environment: a network of multiple targeting and folding pathways for nascent polypeptides in the cytosol. , 1996, Trends in cell biology.

[166]  J. Freedman,et al.  Molecular Characterization of a Novel, Developmentally Regulated Small Embryonic Chaperone from Caenorhabditis elegans* , 1996, The Journal of Biological Chemistry.

[167]  A. Lupas Coiled coils: new structures and new functions. , 1996, Trends in biochemical sciences.

[168]  S. Lindquist,et al.  HSP100/Clp proteins: a common mechanism explains diverse functions. , 1996, Trends in biochemical sciences.

[169]  Kausik Si,et al.  Characterization of Multiple mRNAs That Encode Mammalian Translation Initiation Factor 5 (eIF-5)* , 1996, The Journal of Biological Chemistry.

[170]  O. Hino,et al.  Identification of a novel protein (VBP-1) binding to the von Hippel-Lindau (VHL) tumor suppressor gene product. , 1996, Cancer research.

[171]  B. Bukau,et al.  The Escherichia coli trigger factor , 1996, FEBS letters.

[172]  Craig M. Ogata,et al.  Structural Analysis of Substrate Binding by the Molecular Chaperone DnaK , 1996, Science.

[173]  F. Hartl Molecular chaperones in cellular protein folding , 1996, Nature.

[174]  W. Surewicz,et al.  Conformational Properties of Substrate Proteins Bound to a Molecular Chaperone -Crystallin (*) , 1996, The Journal of Biological Chemistry.

[175]  F Sherman,et al.  Review: The Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts , 1996, Yeast.

[176]  B. Bukau,et al.  Identification of the prolyl isomerase domain of Escherichia coli trigger factor , 1996, FEBS letters.

[177]  G. Fischer,et al.  An 11.8 kDa proteolytic fragment of the E. coli trigger factor represents the domain carrying the peptidyl‐prolyl cis/trans isomerase activity , 1996, FEBS letters.

[178]  F. Quiocho,et al.  Mycobacterium tuberculosis 16-kDa Antigen (Hsp16.3) Functions as an Oligomeric Structure in Vitro to Suppress Thermal Aggregation (*) , 1996, The Journal of Biological Chemistry.

[179]  B. Dobberstein,et al.  Common Principles of Protein Translocation Across Membranes , 1996, Science.

[180]  A. Clarke Molecular chaperones in protein folding and translocation. , 1996, Current opinion in structural biology.

[181]  N. Pfanner,et al.  Protein biogenesis: Chaperones for nascent polypeptides , 1996, Current Biology.

[182]  J. Dice,et al.  Roles of molecular chaperones in protein degradation , 1996, The Journal of cell biology.

[183]  F. Hartl,et al.  Protein folding in the cell: competing models of chaperonin function , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[184]  Zbyszek Otwinowski,et al.  The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATPγS , 1996, Nature Structural Biology.

[185]  L. Cerchia,et al.  Prevention of in Vitro Protein Thermal Aggregation by the Sulfolobus solfataricus Chaperonin , 1995, The Journal of Biological Chemistry.

[186]  S. High,et al.  Early events in preprotein recognition in E. coli: interaction of SRP and trigger factor with nascent polypeptides. , 1995, The EMBO journal.

[187]  E. V. Makeyev,et al.  Cotranslational folding of proteins. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[188]  J. Mornon,et al.  Trigger factor, one of the Escherichia coli chaperone proteins, is an original member of the FKBP family , 1995, FEBS letters.

[189]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[190]  F. Schmid,et al.  A ribosome‐associated peptidyl‐prolyl cis/trans isomerase identified as the trigger factor. , 1995, The EMBO journal.

[191]  M. Wiedmann,et al.  NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center , 1995, The Journal of cell biology.

[192]  W. Tap,et al.  Specificity in chaperonin-mediated protein folding , 1995, Nature.

[193]  N. Pfanner,et al.  Partner proteins determine multiple functions of Hsp70. , 1995, Trends in cell biology.

[194]  R. Huber,et al.  Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. , 1995, Science.

[195]  E. Conway de Macario,et al.  Heat-shock response in Archaea. , 1994, Trends in biotechnology.

[196]  Susan Lindquist,et al.  Protein disaggregation mediated by heat-shock protein Hspl04 , 1994, Nature.

[197]  R. T. Nagao,et al.  A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance. , 1994, The Plant cell.

[198]  Y. Kashi,et al.  Residues in chaperonin GroEL required for polypeptide binding and release , 1994, Nature.

[199]  Zbyszek Otwinowski,et al.  The crystal structure of the bacterial chaperonln GroEL at 2.8 Å , 1994, Nature.

[200]  L. Cerchia,et al.  The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro , 1994, Protein science : a publication of the Protein Society.

[201]  M. Wiedmann,et al.  A protein complex required for signal-sequence-specific sorting and translocation , 1994, Nature.

[202]  Judith Frydman,et al.  Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones , 1994, Nature.

[203]  T. Creighton,et al.  Conformational specificity of the chaperonin GroEL for the compact folding intermediates of alpha‐lactalbumin. , 1994, The EMBO journal.

[204]  E. Conway de Macario,et al.  Identification of a grpE heat-shock gene homolog in the archaeon Methanosarcina mazei. , 1994, Journal of molecular biology.

[205]  J. Wise,et al.  Molecular evolution of SRP cycle components: functional implications. , 1994, Nucleic acids research.

[206]  N. Cowan,et al.  Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates , 1994, Molecular and cellular biology.

[207]  J. Buchner,et al.  Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones. , 1994, Trends in biochemical sciences.

[208]  T. Langer,et al.  DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. , 1994, Trends in biochemical sciences.

[209]  W. Baumeister,et al.  The molecular chaperone TF55 , 1994, FEBS letters.

[210]  P. Christen,et al.  Kinetics of molecular chaperone action. , 1994, Science.

[211]  A. Ashworth,et al.  Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin , 1994, Current Biology.

[212]  C. Yeh,et al.  Plant low‐molecular‐mass heat‐shock proteins: their relationship to the acquisition of thermotolerance in plants , 1994, Biotechnology and applied biochemistry.

[213]  Richard I. Morimoto,et al.  1 Progress and Perspectives on the Biology of Heat Shock Proteins and Molecular Chaperones , 1994 .

[214]  S. Sprang,et al.  Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP , 1993, Cell.

[215]  F. Hartl,et al.  DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat‐induced protein damage. , 1993, The EMBO journal.

[216]  William J. Welch,et al.  ATP-induced protein Hsp70 complex dissociation requires K+ but not ATP hydrolysis , 1993, Nature.

[217]  F. Blattner,et al.  Characterization of twenty-six new heat shock genes of Escherichia coli , 1993, Journal of bacteriology.

[218]  K. Willison,et al.  Protein folding in the cell: functions of two families of molecular chaperone, hsp 60 and TF55-TCP1. , 1993 .

[219]  M. Gaestel,et al.  Small heat shock proteins are molecular chaperones. , 1993, The Journal of biological chemistry.

[220]  F. Hartl,et al.  Function in protein folding of TRiC, a cytosolic ring complex containing TCP‐1 and structurally related subunits. , 1992, The EMBO journal.

[221]  M. Werner-Washburne,et al.  The translation machinery and 70 kd heat shock protein cooperate in protein synthesis , 1992, Cell.

[222]  H. Saibil,et al.  T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol , 1992, Nature.

[223]  John O. Thomas,et al.  A cytoplasmic chaperonin that catalyzes β-actin folding , 1992, Cell.

[224]  S. Lindquist,et al.  Hsp104 is required for tolerance to many forms of stress. , 1992, The EMBO journal.

[225]  J. Landry,et al.  Expression of Drosophila's 27 kDa heat shock protein into rodent cells confers thermal resistance. , 1992, Biochemical and biophysical research communications.

[226]  F. Hartl,et al.  Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding , 1992, Nature.

[227]  W. W. Jong,et al.  Expression and aggregation of recombinant αA-crystallin and its two domains , 1992 .

[228]  D. Dixon,et al.  Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. , 1992, Molecular biology of the cell.

[229]  J. Sambrook,et al.  Protein folding in the cell , 1992, Nature.

[230]  F. Hartl,et al.  A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1 , 1991, Nature.

[231]  E. Conway de Macario,et al.  A dnaK homolog in the archaebacterium Methanosarcina mazei S6. , 1991, Gene.

[232]  M. Gaestel,et al.  Supramolecular structure of the recombinant murine small heat shock protein hsp25 , 1991, FEBS letters.

[233]  F. Hartl,et al.  Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate , 1991, Nature.

[234]  W. Baumeister,et al.  A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. , 1991, The EMBO journal.

[235]  M. Culbertson,et al.  The yeast homolog to mouse Tcp-1 affects microtubule-mediated processes , 1991, Molecular and cellular biology.

[236]  K. Flaherty,et al.  Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein , 1990, Nature.

[237]  S. Lindquist,et al.  HSP104 required for induced thermotolerance. , 1990, Science.

[238]  W. Welch,et al.  Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. , 1990, Science.

[239]  J. Rothman Polypeptide chain binding proteins: Catalysts of protein folding and related processes in cells , 1989, Cell.

[240]  A. Holmgren,et al.  Crystal structure of chaperone protein PapD reveals an immunoglobulin fold , 1989, Nature.

[241]  R. Ellis,et al.  Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. , 1989, Trends in biochemical sciences.

[242]  J. Landry,et al.  Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells , 1989, The Journal of cell biology.

[243]  Koreaki Ito,et al.  SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. , 1989, The EMBO journal.

[244]  Roger W. Hendrix,et al.  Homologous plant and bacterial proteins chaperone oligomeric protein assembly , 1988, Nature.

[245]  S. Lindquist,et al.  The heat-shock proteins. , 1988, Annual review of genetics.

[246]  J. Ellis Proteins as molecular chaperones , 1987, Nature.

[247]  A. Goldberg,et al.  Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. , 1986, Science.

[248]  L. Hightower Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides , 1980, Journal of cellular physiology.

[249]  J. Finch,et al.  Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA , 1978, Nature.

[250]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.