Evaluation on Static Mechanical Stability of Wrought Inconel 718 Superalloy; Effect of Grain Configuration and Δ Precipitation

[1]  Ze Zhang,et al.  In-situ SEM study of temperature-dependent tensile behavior of Inconel 718 superalloy , 2021, Journal of Materials Science.

[2]  S. Primig,et al.  Evolution of nanoscale precipitates during common Alloy 718 ageing treatments , 2021, Materials & Design.

[3]  M. Hardy,et al.  Solving Recent Challenges for Wrought Ni-Base Superalloys , 2020, Metallurgical and Materials Transactions A.

[4]  S. Primig,et al.  Microstructure-property relationships in directly aged Alloy 718 turbine disks , 2020 .

[5]  Huijun Li,et al.  Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants , 2019, Scripta Materialia.

[6]  Simon P. Ringer,et al.  On conventional versus direct ageing of Alloy 718 , 2018, Acta Materialia.

[7]  J. Cormier,et al.  Mechanical Properties Evolution of γ′/γ″ Nickel-Base Superalloys During Long-Term Thermal Over-Aging , 2018, Metallurgical and Materials Transactions A.

[8]  Huijun Li,et al.  Hot tensile behavior of cold-rolled Inconel 718 alloy at 650 °C: The role of δ phase , 2018 .

[9]  Huijun Li,et al.  Delta precipitation in wrought Inconel 718 alloy; the role of dynamic recrystallization , 2017 .

[10]  M. G. Burke,et al.  Evaluation of classical precipitation descriptions for γ ′ ′ ( Ni 3 NbD 0 22 ) in Ni-base Superalloys , 2018 .

[11]  P. Bocher,et al.  δ Phase precipitation in Inconel 718 and associated mechanical properties , 2017 .

[12]  Q. Guo,et al.  RECENT PROGRESS ON EVOLUTION OF PRECIPI-TATES IN INCONEL 718 SUPERALLOY , 2016 .

[13]  J. Cormier,et al.  Microstructure and mechanical properties evolutions of alloy 718 during isothermal and thermal cycling over-aging , 2016 .

[14]  Jianxun Zhang,et al.  Microstructural evolution and mechanical properties of Inconel 718 after thermal exposure , 2015 .

[15]  Xishan Xie,et al.  Mechanism of α-Cr precipitation and crystallographic relationships between α-Cr and δ phases in Inconel 718 alloy after long-time thermal exposure , 2010 .

[16]  M. Yao,et al.  Dissolution kinetics of δ phase and its influence on the notch sensitivity of Inconel 718 , 2007 .

[17]  T. Pollock,et al.  Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties , 2006 .

[18]  Liu Wei,et al.  Delta phase precipitation in Inconel 718 , 2004 .

[19]  D. Srinivasan Effect of long-time exposure on the evolution of minor phases in Alloy 718 , 2004 .

[20]  D. Delafosse,et al.  Oxidation induced intergranular cracking and Portevin–Le Chatelier effect in nickel base superalloy 718 , 2001 .

[21]  M. Sundararaman,et al.  Overlapping of γ′ precipitate variants in Inconel 718 , 1993 .

[22]  Yafang Han,et al.  Effect of particle size on the creep rate of superalloy Inconel 718 , 1987 .

[23]  D. S. Duvall,et al.  Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates , 1974, Metallurgical and Materials Transactions B.

[24]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .