Enhanced noble gas adsorption in Ag@MOF-74Ni.

Various amounts of Ag nanoparticles were successfully deposited in porous MOF-74Ni (or Ni/DOBDC) by an auto-reduction method. An optimized silver-loaded MOF-74Ni was shown to have an improved Xe adsorption capacity (15% more) at STP compared to the MOF without silver nanoparticles. The silver-loaded sample also has a higher Xe/Kr selectivity. These results are explained by the stronger interactions between polarizable Xe molecules and the well-dispersed Ag nanoparticles.

[1]  Zhijuan Zhang,et al.  The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases , 2014 .

[2]  Yamil J. Colón,et al.  High xenon/krypton selectivity in a metal-organic framework with small pores and strong adsorption sites , 2013 .

[3]  R. Banerjee,et al.  Porous-organic-framework-templated nitrogen-rich porous carbon as a more proficient electrocatalyst than Pt/C for the electrochemical reduction of oxygen. , 2013, Chemistry.

[4]  Kenji Sumida,et al.  Impact of metal and anion substitutions on the hydrogen storage properties of M-BTT metal-organic frameworks. , 2013, Journal of the American Chemical Society.

[5]  M. Allendorf,et al.  Effects of Polarizability on the Adsorption of Noble Gases at Low Pressures in Monohalogenated Isoreticular Metal–Organic Frameworks , 2012 .

[6]  M. Dixit,et al.  Scandium-decorated MOF-5 as potential candidates for room-temperature hydrogen storage : A solution for the clustering problem in MOFs , 2012 .

[7]  P. Thallapally,et al.  Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[8]  C. Wilmer,et al.  Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks , 2012 .

[9]  Seda Keskin,et al.  Atomically Detailed Modeling of Metal Organic Frameworks for Adsorption, Diffusion, and Separation of Noble Gas Mixtures , 2012 .

[10]  P. Thallapally,et al.  Progress in adsorption-based CO2 capture by metal-organic frameworks. , 2012, Chemical Society reviews.

[11]  Rachel B. Getman,et al.  Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. , 2012, Chemical reviews.

[12]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[13]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[14]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[15]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[16]  J. Grate,et al.  Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal. , 2012, Chemical communications.

[17]  T. Akita,et al.  Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. , 2011, Journal of the American Chemical Society.

[18]  L. Broadbelt,et al.  Computational screening of metal-organic frameworks for xenon/krypton separation , 2011 .

[19]  G. Peterson,et al.  MOF-74 building unit has a direct impact on toxic gas adsorption , 2011 .

[20]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[21]  G. Tendeloo,et al.  Metals@MOFs – Loading MOFs with Metal Nanoparticles for Hybrid Functions , 2010 .

[22]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[23]  M. Doublet,et al.  Design of Electrode Materials for Lithium-Ion Batteries: The Example of Metal−Organic Frameworks , 2010 .

[24]  Richard Blom,et al.  Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide , 2009 .

[25]  G. Kónya,et al.  Theoretical Study on the Interaction between Xenon and Positively Charged Silver Clusters in Gas Phase and on the (001) Chabazite Surface , 2009 .

[26]  S. Nguyen,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[27]  U. Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[28]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[29]  Hong‐Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[30]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[31]  R. Snurr,et al.  Using molecular simulation to characterise metal-organic frameworks for adsorption applications. , 2009, Chemical Society reviews.

[32]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[33]  J. Long,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[34]  Mark D. Allendorf,et al.  Adsorption and Separation of Noble Gases by IRMOF-1 : Grand Canonical Monte Carlo Simulations , 2009 .

[35]  O. Yaghi,et al.  Metal-organic frameworks with high capacity and selectivity for harmful gases , 2008, Proceedings of the National Academy of Sciences.

[36]  C. D. Collier,et al.  Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. , 2008, Journal of the American Chemical Society.

[37]  R. Ahuja,et al.  Li-decorated metal–organic framework 5: A route to achieving a suitable hydrogen storage medium , 2007, Proceedings of the National Academy of Sciences.

[38]  J. Tarascon,et al.  Mixed-valence li/fe-based metal-organic frameworks with both reversible redox and sorption properties. , 2007, Angewandte Chemie.

[39]  S. M. Kuznicki,et al.  Xenon Adsorption on Modified ETS-10 , 2007 .

[40]  Ji Hyun Kim,et al.  Redox-active porous metal-organic framework producing silver nanoparticles from AgI ions at room temperature. , 2005, Angewandte Chemie.