Study of structures, energetics, IR spectra and 13C and 1H NMR chemical shifts of the conformations of isopropyl cation by ab initio calculations
暂无分享,去创建一个
[1] Jonathan L Chen,et al. Ab initio/DFT/GIAO-CCSD(T) calculational study of the t-butyl cation: comparison of experimental data with structures, energetics, IR vibrational frequencies, and 13C NMR chemical shifts indicating preferred C(s) conformation. , 2009, The journal of physical chemistry. A.
[2] P. Schleyer,et al. Infrared spectroscopy of the tert-butyl cation in the gas phase. , 2007, Journal of the American Chemical Society.
[3] J. Gauss,et al. NMR Spectroscopic and quantum chemical characterization of the (E )− and (Z )− isomers of the penta‐1,3‐dienyl‐2‐cation , 2003 .
[4] J. Gauss,et al. NMR Spectroscopic and quantum chemical characterization of the (E )− and (Z )− isomers of the penta-1,3-dienyl-2-cation: NMR AND QUANTUM CHEMICAL STUDY OF (E/Z)-PENTA-1,3-DIENYL-2-CATIONS , 2003 .
[5] J. Stanton,et al. Computational study of [10]annulene NMR spectra. , 2002, Organic letters.
[6] D. Farcasiu,et al. Ab Initio Calculations of the13C NMR Spectrum of 2-Propyl Cations in Ion Pairs1 , 1998 .
[7] D. Hâncu,et al. Theoretical Studies of Carbocations in Ion Pairs. 1.1 The 2-Propyl Cation , 1997 .
[8] J. Nicholas,et al. 13C CHEMICAL SHIFT TENSOR OF THE ISOPROPYL CATION , 1996 .
[9] J. Gauss,et al. Accurate computations of 77Se NMR chemical shifts with the GIAO-CCSD method , 1995 .
[10] J. Gauss. Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .
[11] Hans W. Horn,et al. Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .
[12] J. Gauss. Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals , 1992 .
[13] Peter Pulay,et al. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .
[14] P. Schleyer,et al. Definitive characterization of the C3H7+ potential energy surface , 1989 .
[15] G. Olah,et al. Stable carbocations. 208. Carbon-13 nuclear magnetic resonance spectroscopic study of alkyl cations. The constancy of carbon-13 nuclear magnetic resonance methyl substituent effects and their application in the study of equilibrating carbocations and the mechanism of some rearrangements , 1977 .
[16] R. Ditchfield,et al. Self-consistent perturbation theory of diamagnetism , 1974 .
[17] G. Olah,et al. Stable carbonium ions. XCI. Carbon-13 nuclear magnetic resonance spectroscopic study of carbonium ions , 1969 .
[18] E. B. Baker,et al. Stable Carbonium Ions. V.1a Alkylcarbonium Hexafluoroantimonates , 1964 .
[19] F. London,et al. Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .
[20] N. Smith,et al. With contributions from , 2007 .
[21] P. Schleyer,et al. Stable carbocation chemistry , 1997 .
[22] Æleen Frisch,et al. Exploring chemistry with electronic structure methods , 1996 .
[23] P. Schleyer,et al. The prop-2-yl cation is chiral , 1989 .