Study of structures, energetics, IR spectra and 13C and 1H NMR chemical shifts of the conformations of isopropyl cation by ab initio calculations

[1]  Jonathan L Chen,et al.  Ab initio/DFT/GIAO-CCSD(T) calculational study of the t-butyl cation: comparison of experimental data with structures, energetics, IR vibrational frequencies, and 13C NMR chemical shifts indicating preferred C(s) conformation. , 2009, The journal of physical chemistry. A.

[2]  P. Schleyer,et al.  Infrared spectroscopy of the tert-butyl cation in the gas phase. , 2007, Journal of the American Chemical Society.

[3]  J. Gauss,et al.  NMR Spectroscopic and quantum chemical characterization of the (E )− and (Z )− isomers of the penta‐1,3‐dienyl‐2‐cation , 2003 .

[4]  J. Gauss,et al.  NMR Spectroscopic and quantum chemical characterization of the (E )− and (Z )− isomers of the penta-1,3-dienyl-2-cation: NMR AND QUANTUM CHEMICAL STUDY OF (E/Z)-PENTA-1,3-DIENYL-2-CATIONS , 2003 .

[5]  J. Stanton,et al.  Computational study of [10]annulene NMR spectra. , 2002, Organic letters.

[6]  D. Farcasiu,et al.  Ab Initio Calculations of the13C NMR Spectrum of 2-Propyl Cations in Ion Pairs1 , 1998 .

[7]  D. Hâncu,et al.  Theoretical Studies of Carbocations in Ion Pairs. 1.1 The 2-Propyl Cation , 1997 .

[8]  J. Nicholas,et al.  13C CHEMICAL SHIFT TENSOR OF THE ISOPROPYL CATION , 1996 .

[9]  J. Gauss,et al.  Accurate computations of 77Se NMR chemical shifts with the GIAO-CCSD method , 1995 .

[10]  J. Gauss Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .

[11]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[12]  J. Gauss Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals , 1992 .

[13]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[14]  P. Schleyer,et al.  Definitive characterization of the C3H7+ potential energy surface , 1989 .

[15]  G. Olah,et al.  Stable carbocations. 208. Carbon-13 nuclear magnetic resonance spectroscopic study of alkyl cations. The constancy of carbon-13 nuclear magnetic resonance methyl substituent effects and their application in the study of equilibrating carbocations and the mechanism of some rearrangements , 1977 .

[16]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[17]  G. Olah,et al.  Stable carbonium ions. XCI. Carbon-13 nuclear magnetic resonance spectroscopic study of carbonium ions , 1969 .

[18]  E. B. Baker,et al.  Stable Carbonium Ions. V.1a Alkylcarbonium Hexafluoroantimonates , 1964 .

[19]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[20]  N. Smith,et al.  With contributions from , 2007 .

[21]  P. Schleyer,et al.  Stable carbocation chemistry , 1997 .

[22]  Æleen Frisch,et al.  Exploring chemistry with electronic structure methods , 1996 .

[23]  P. Schleyer,et al.  The prop-2-yl cation is chiral , 1989 .