Non-autonomous stochastic evolution equations and applications to stochastic partial differential equations

AbstractIn this paper we study the following non-autonomous stochastic evolution equation on a Banach space E: $$({\rm SE})\quad \left\{\begin{array}{ll} {\rm d}U(t) = (A(t)U(t) +F(t,U(t)))\,{\rm d}t + B(t,U(t))\,{\rm d}W_H(t), \quad t\in [0,T], \\ U(0) = u_0.\end{array}\right.$$Here, $${(A(t))_{t\in [0,T]}}$$ are unbounded operators with domains $${(D(A(t)))_{t\in [0,T]}}$$ which may be time dependent. We assume that $${(A(t))_{t\in [0,T]}}$$ satisfies the conditions of Acquistapace and Terreni. The functions F and B are nonlinear functions defined on certain interpolation spaces and $${u_0\in E}$$ is the initial value. WH is a cylindrical Brownian motion on a separable Hilbert space H. We assume that the Banach space E is a UMD space with type 2. Under locally Lipschitz conditions we show that there exists a unique local mild solution of (SE). If the coefficients also satisfy a linear growth condition, then it is shown that the solution exists globally. Under assumptions on the interpolation spaces we extend the factorization method of Da Prato, Kwapień, and Zabczyk, to obtain space-time regularity results for the solution U of (SE). For Hilbert spaces E we obtain a maximal regularity result. The results improve several previous results from the literature. The theory is applied to a second-order stochastic partial differential equation which has been studied by Sanz-Solé and Vuillermot. This leads to several improvements of their result.

[1]  M. Veraar,et al.  Stochastic evolution equations in UMD Banach spaces , 2008, 0804.0932.

[2]  E. Pardouxt,et al.  Stochastic partial differential equations and filtering of diffusion processes , 1980 .

[3]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[4]  L. Maniar,et al.  Robustness of Fredholm properties of parabolic evolution equations under boundary perturbations , 2008 .

[5]  Tosio Kato,et al.  Remarks on Pseudo-resolvents and Infinitesimal Generators of Semi-groups , 1959 .

[6]  J. Neerven,et al.  Space-Time Regularity of Solutions of the Parabolic Stochastic Cauchy Problem , 2006 .

[7]  Markus Haase,et al.  The Functional Calculus for Sectorial Operators , 2006 .

[8]  P. Acquistapace,et al.  Regularity properties of the evolution operator for abstract linear parabolic equations , 1992, Differential and Integral Equations.

[9]  V. Bogachev Gaussian Measures on a , 2022 .

[10]  Herbert Amann,et al.  Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.

[11]  S. Cerrai Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term , 2003 .

[12]  A. Yagi Parabolic evolution equations in which the coefficients are the generators of infinitely differentiable semigroups , 1989 .

[13]  R. Manthey,et al.  Stochastic evolution equations in L2vp , 1999 .

[14]  É. Pardoux,et al.  Équations aux dérivées partielles stochastiques non linéaires monotones : étude de solutions fortes de type Ito , 1975 .

[15]  L. Weis,et al.  Maximal Lp-regularity for Parabolic Equations, Fourier Multiplier Theorems and $H^\infty$-functional Calculus , 2004 .

[16]  J. Diestel,et al.  Absolutely Summing Operators , 1995 .

[17]  G. Nickel Evolution semigroups for nonautonomous Cauchy problems , 1997 .

[18]  Z. Brzeźniak,et al.  Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise , 2003 .

[19]  G. Pisier Martingales with values in uniformly convex spaces , 1975 .

[20]  Christian Le Merdy,et al.  The Weiss Conjecture for Bounded Analytic Semigroups , 2003 .

[21]  Jerzy Zabczyk,et al.  Regularity of solutions of linear stochastic equations in hilbert spaces , 1988 .

[22]  Giuseppe Da Prato,et al.  A note on stochastic convolution , 1992 .

[23]  Xuan Duong,et al.  Operator Theory and Harmonic Analysis , 2021, Springer Proceedings in Mathematics & Statistics.

[24]  Bohdan Maslowski,et al.  Stochastic nonlinear beam equations , 2005 .

[25]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[26]  Jan Seidler Da Prato-Zabczyk's maximal inequality revisited. I. , 1993 .

[27]  M. Veraar Continuous local martingales and stochastic integration in UMD Banach spaces , 2007 .

[28]  N. Krylov An analytic approach to SPDE’s , 1999 .

[29]  D. Dawson Stochastic evolution equations and related measure processes , 1975 .

[30]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[31]  D. Ocone Stochastic evolution equations. Linear Theory and Applications to Nonlinear Filtering , 1994 .

[32]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[33]  M. Sanz-Solé,et al.  Holder-Sobolev regularity of solutions to a class of SPDE's driven by a spatially colored noise , 2002 .

[34]  J. Neerven,et al.  Stochastic integration of functions with values in a Banach space , 2005 .

[35]  R. Schnaubelt Asymptotic Behaviour of Parabolic Nonautonomous Evolution Equations , 2004 .

[36]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[37]  L. Maniar,et al.  The Fredholm alternative for parabolic evolution equations with inhomogeneous boundary conditions , 2007 .

[38]  M. C. Veraar,et al.  Ito's formula in UMD Banach spaces and regularity of solutions of the Zakai equation , 2008 .

[39]  Matthias Hieber,et al.  SOME NEW THOUGHTS ON OLD RESULTS OF R , 2003 .

[40]  Z. Brzeźniak On stochastic convolution in banach spaces and applications , 1997 .

[41]  R. Seeley Interpolation in $L^{p}$ with boundary conditions , 1972 .

[42]  R. Manthey,et al.  Stochastic evolution equations in , 1999 .

[43]  D. Burkholder Chapter 6 - Martingales and Singular Integrals in Banach Spaces , 2001 .

[44]  Paolo Acquistapace,et al.  A unified approach to abstract linear nonautonomous parabolic equations , 1987 .

[45]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[46]  田辺 広城,et al.  Functional analytic methods for partial differential equations , 1997 .

[47]  G. J. O. Jameson,et al.  ABSOLUTELY SUMMING OPERATORS (Cambridge Studies in Advanced Mathematics 43) By Joe Diestel, Hans Jarchow and Andrew Tonge: 474 pp., £40.00 (US$59.95), ISBN 0 521 43168 9 (Cambridge University Press, 1995). , 1997 .

[48]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[49]  M. Veraar Stochastic integration in Banach spaces and applications to parabolic evolution equations , 2006 .

[50]  P. Acquistapace Evolution operators and strong solutions of abstract linear parabolic equations , 1988, Differential and Integral Equations.

[51]  田辺 広城,et al.  Equations of evolution , 1979 .

[52]  R. Nagel,et al.  Functional Analytic Methods for Evolution Equations , 2004 .

[53]  René Carmona,et al.  Stochastic Partial Differential Equations: Six Perspectives , 1998 .

[54]  A. Lunardi On the evolution operator for abstract parabolic equations , 1987 .

[55]  M. Veraar,et al.  Non-autonomous stochastic Cauchy problems in Banach spaces , 2008 .

[56]  Xicheng Zhang Lp-Theory of semi-linear SPDEs on general measure spaces and applications , 2006 .

[57]  B. Rozovskii Stochastic Evolution Systems , 1990 .

[58]  M. Sanz-Solé,et al.  Equivalence and Hölder-Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations , 2003 .

[59]  Zdzisław Brzeźniak,et al.  Stochastic partial differential equations in M-type 2 Banach spaces , 1995 .