Mapping techniques for aligning sulci across multiple brains.

Visualization and mapping of function on the cortical surface is difficult because of its sulcal and gyral convolutions. Methods to unfold and flatten the cortical surface for visualization and measurement have been described in the literature. This makes visualization and measurement possible, but comparison across multiple subjects is still difficult because of the lack of a standard mapping technique. In this paper, we describe two methods that map each hemisphere of the cortex to a portion of a sphere in a standard way. To quantify how accurately the geometric features of the cortex – i.e., sulci and gyri – are mapped into the same location, sulcal alignment across multiple brains is analyzed, and probabilistic maps for different sulcal regions are generated to be used in automatic labelling of segmented sulcal regions.

[1]  H. Scheffé,et al.  The Analysis of Variance , 1960 .

[2]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[3]  S. Riederer,et al.  A spoiling sequence for suppression of residual transverse magnetization , 1990, Magnetic resonance in medicine.

[4]  Richard M. Leahy,et al.  Optimization method for creating semi-isometric flat maps of the cerebral cortex , 2000, Medical Imaging: Image Processing.

[5]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[6]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[7]  Paul M. Thompson,et al.  Genus zero surface conformal mapping and its application to brain surface mapping , 2004, IEEE Transactions on Medical Imaging.

[8]  Jerry L. Prince,et al.  Adaptive fuzzy segmentation of magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[9]  Xiao Han,et al.  Automatic segmentation editing for cortical surface reconstruction , 2001, SPIE Medical Imaging.

[10]  Eric L. Schwartz,et al.  A Numerical Solution to the Generalized Mapmaker's Problem: Flattening Nonconvex Polyhedral Surfaces , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[12]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[13]  David A. Rottenberg,et al.  Quasi-Conformally Flat Mapping the Human Cerebellum , 1999, MICCAI.

[14]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[15]  Xiao Han,et al.  Cortical surface reconstruction using a topology preserving geometric deformable model , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[16]  Xiao Han,et al.  Topology Preserving Geometric Deformable Models for Brain Reconstruction , 2003 .

[17]  Dlg Hill,et al.  The Shape of the Developing Foetal Cortex from MR Images , 2000 .

[18]  A. Dale,et al.  A surface-based coordinate system for a canonical cortex , 1996, NeuroImage.

[19]  S. Resnick,et al.  One-year age changes in MRI brain volumes in older adults. , 2000, Cerebral cortex.

[20]  Jerry L. Prince,et al.  Hemispherical map for the human brain cortex , 2001, SPIE Medical Imaging.

[21]  Ron Kimmel,et al.  Computational Surface Flattening: A Voxel-Based Approach , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Jerry L. Prince,et al.  Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm , 2002, IEEE Transactions on Medical Imaging.

[23]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Dzung L. Pham,et al.  Robust fuzzy segmentation of magnetic resonance images , 2001, Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001.

[25]  Tristan Needham,et al.  Visual Complex Analysis , 1997 .

[26]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Jerry L Prince,et al.  Automated Sulcal Segmentation Using Watersheds on the Cortical Surface , 2002, NeuroImage.

[28]  H A Drury,et al.  Computational methods for reconstructing and unfolding the cerebral cortex. , 1995, Cerebral cortex.

[29]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[30]  Ron Kikinis,et al.  On the Laplace-Beltrami operator and brain surface flattening , 1999, IEEE Transactions on Medical Imaging.

[31]  Jerry L. Prince,et al.  Reconstruction of the human cerebral cortex from magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[32]  Dinggang Shen,et al.  Automatic classification of sulcal regions of the human brain cortex using pattern recognition , 2003, SPIE Medical Imaging.