Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation

We study the Cauchy problem for a nonlinear Schrodinger equation which is the generalization of a one arising in plasma physics. We focus on the so called subcritical case and prove that when the initial datum is "small", the solution exists globally in time and decays in time just like in the linear case. For a certain range of the exponent in the nonlinear term, we prove that the solution is asymptotic to a "final state" and the nonexistence of asymptotically free solutions. The method used in this paper is based on some gauge transformation and on a certain phase function.