Elimination, fundamental principle and duality for analytic linear systems of partial differential-difference equations with constant coefficients

In this paper we investigate the solvability of inhomogeneous linear systems of partial differential-difference equations with constant coefficients and also the corresponding duality problem in how far the solutions of the corresponding homogeneous systems determine the equations. For ordinary delay-differential (DD) equations these behavioral problems were investigated in a seminal paper by Glüsing-Lürssen (SIAM J Control Optim 35:480–499, 1997) and in later papers by Habets, Glüsing-Lürssen, Vettori and Zampieri. In these papers the delay-differential operators are considered as distributions with compact support which act on smooth functions or on arbitrary distributions via convolution. The entire analytic Laplace transforms of the distributions with compact support play an important part in the quoted papers. In our approach the partial differential-difference operators belong to various topological operator rings $$A$$ of holomorphic functions on subsets of $$\mathbb C ^n$$ and are thus studied in the frequency domain, the arguments of these (operator) functions being interpreted as generalized frequencies. We show that the topological duals $$A^{\prime }$$ of these operator rings with the canonical action of $$A$$ on $$A^{\prime }$$ have strong elimination and duality properties for $$_A A^{\prime }$$-behaviors and admit concrete representations as spaces of analytic functions of systems theoretic interest. In particular, we study systems with generalized frequencies in the vicinity of suitable compact sets. An application to elimination for systems of periodic signals is given. We also solve an open problem of the quoted authors for DD-equations with incommensurate delays and analytic signals. Module theoretic methods in context with DD-equations have also been used by other authors, for instance by Fliess, Mounier, Rocha and Willems.

[1]  Otto Forster,et al.  Zur Theorie der Steinschen Algebren und Moduln , 1967 .

[2]  Carlos A. Berenstein,et al.  The Ritt theorem in several variables , 1974 .

[3]  Shiva Shankar,et al.  The Lattice Structure of Behaviors , 2000, SIAM J. Control. Optim..

[4]  R. Remmert,et al.  Coherent Analytic Sheaves , 1984 .

[5]  Hans Grauert,et al.  Theorie der Steinschen Räume , 1977 .

[6]  Virendra Sule,et al.  Algebraic geometric aspects of feedback stabilization , 1992 .

[7]  André Martineau,et al.  Sur les fonctionnelles analytiques et la transformation de Fourier-Borel , 1963 .

[8]  Heide Gluesing-Luerssen,et al.  The algebraic structure of delay-differential systems: a behavioral perspective , 2001, Kybernetika.

[9]  C. SIAMJ.,et al.  The Fractional Representation Approach to Synthesis Problems: An Algebraic Analysis Viewpoint Part I: (Weakly) Doubly Coprime Factorizations , 2003, SIAM J. Control. Optim..

[10]  L. Hörmander,et al.  An introduction to complex analysis in several variables , 1973 .

[11]  H. Glüsing-Lüerssen,et al.  A Behavioral Approach To Delay-Differential Systems , 1997 .

[12]  Diego Napp Avelli,et al.  Periodic Behaviors , 2010, SIAM J. Control. Optim..

[13]  Luc C. G. J. M. Habets,et al.  System Equivalence for AR-Systems over Rings—with an Application to Delay-Differential Systems , 1997, 1997 European Control Conference (ECC).

[14]  N. Bourbaki Espaces vectoriels topologiques , 1955 .

[15]  Hugues Mounier,et al.  Algebraic interpretations of the spectral controllability of a linear delay system , 1998 .

[16]  Joseph L. Taylor Several Complex Variables with Connections to Algebraic Geometry and Lie Groups , 2002 .

[17]  D. I. Gurevich,et al.  Counterexamples to a problem of L. Schwartz , 1975 .

[18]  Mitsuo Morimoto An Introduction to Sato's Hyperfunctions , 1993 .

[19]  Joachim Apel,et al.  Properties of Entire Functions Over Polynomial Rings via Gröbner Bases , 2003, Applicable Algebra in Engineering, Communication and Computing.

[20]  U. Oberst Multidimensional constant linear systems , 1990, EUROCAST.

[21]  L. Ehrenpreis,et al.  Solutions of Some Problems of Division: Part III. Division in the Spaces, D , H, Q A , O , 1956 .

[22]  Heide Gluesing-Luerssen,et al.  Linear Delay-Differential Systems with Commensurate Delays: An Algebraic Approach , 2001 .

[23]  Henri Bourlès,et al.  Duality for Differential-Difference Systems over Lie Groups , 2009, SIAM J. Control. Optim..

[24]  Alban Quadrat,et al.  The Fractional Representation Approach to Synthesis Problems: An Algebraic Analysis Viewpoint Part II: Internal Stabilization , 2003, SIAM J. Control. Optim..

[25]  B. Malgrange Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution , 1956 .

[26]  Jacques Frisch,et al.  Points de platitude d'un morphisme d'espaces analytiques complexes , 1967 .

[27]  L. Hörmander Analysis of Linear Partial Differential Operators II , 2005 .

[28]  M. Fliess Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives , 1983 .

[29]  Shiva Shankar Geometric Completeness of Distribution Spaces , 2003 .

[30]  S. Zampieri,et al.  The algebraic structure of DD systems : a behavioral perspective , 2000 .

[31]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[32]  Sandro Zampieri,et al.  Some results on systems described by convolutional equations , 2001, IEEE Trans. Autom. Control..