Super-resolution land cover mapping using a Markov random field based approach
暂无分享,去创建一个
[1] Gerhard Winkler,et al. Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.
[2] Paul Aplin,et al. Sub-pixel land cover mapping for per-field classification , 2001 .
[3] L. P. C. Verbeke,et al. Using genetic algorithms in sub-pixel mapping , 2003 .
[4] Martin Brown,et al. Linear spectral mixture models and support vector machines for remote sensing , 2000, IEEE Trans. Geosci. Remote. Sens..
[5] R. DeFries,et al. Classification trees: an alternative to traditional land cover classifiers , 1996 .
[6] Pramod K. Varshney,et al. An image change detection algorithm based on Markov random field models , 2002, IEEE Trans. Geosci. Remote. Sens..
[7] Robert De Wulf,et al. Land cover mapping at sub-pixel scales using linear optimization techniques , 2002 .
[8] Hugh G. Lewis,et al. Super-resolution target identification from remotely sensed images using a Hopfield neural network , 2001, IEEE Trans. Geosci. Remote. Sens..
[9] Manoj K. Arora,et al. Support Vector Machines for Classification of Multi- and Hyperspectral Data , 2004 .
[10] Paul M. Mather,et al. Computer Processing of Remotely-Sensed Images: An Introduction , 1988 .
[11] Anil K. Jain,et al. A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..
[12] John Odentrantz,et al. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.
[13] Fawwaz T. Ulaby,et al. SAR speckle reduction using wavelet denoising and Markov random field modeling , 2002, IEEE Trans. Geosci. Remote. Sens..
[14] J. Bezdek,et al. FCM: The fuzzy c-means clustering algorithm , 1984 .
[15] Hugh G. Lewis,et al. Increasing the spatial resolution of agricultural land cover maps using a Hopfield neural network , 2003, Int. J. Geogr. Inf. Sci..
[16] H. V. Trees. Detection, Estimation, And Modulation Theory , 2001 .
[17] Masayuki Tamura,et al. Accuracy of land cover area estimated from coarse spatial resolution images using an unmixing method , 2004 .
[18] Paul M. Mather,et al. Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields , 1999, IEEE Trans. Geosci. Remote. Sens..
[19] Andrew J. Tatem. Super-resolution land cover mapping from remotely sensed imagery using a Hopfield neural network , 2001 .
[20] Hugh G. Lewis,et al. Super-resolution land cover pattern prediction using a Hopfield neural network , 2002 .
[21] Giles M. Foody,et al. Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data , 1996 .
[22] G. Foody,et al. Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions , 1994 .
[23] Lorenzo Bruzzone,et al. Automatic analysis of the difference image for unsupervised change detection , 2000, IEEE Trans. Geosci. Remote. Sens..
[24] Sridhar Lakshmanan,et al. Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[25] J. Settle,et al. Linear mixing and the estimation of ground cover proportions , 1993 .
[26] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[27] G. Foody. Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution , 1998 .
[28] Elisabetta Binaghi,et al. A fuzzy set-based accuracy assessment of soft classification , 1999, Pattern Recognit. Lett..
[29] Pramod K. Varshney,et al. Distributed Detection and Data Fusion , 1996 .
[30] Vikash Kumar,et al. A MRF model-based segmentation approach to classification for multispectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..
[31] Giles M. Foody,et al. Estimation of sub-pixel land cover composition in the presence of untrained classes , 2000 .
[32] Ryuei Nishii. A Markov random field-based approach to decision-level fusion for remote sensing image classification , 2003, IEEE Trans. Geosci. Remote. Sens..
[33] P. Atkinson,et al. Uncertainty in remote sensing and GIS , 2002 .
[34] Lieven Verbeke,et al. Sub-pixel mapping and sub-pixel sharpening using neural network predicted wavelet coefficients , 2004 .