Dynamic sensitivity analysis of long-running landslide models through basis set expansion and meta-modelling

Predicting the temporal evolution of landslides is typically supported by numerical modelling. Dynamic sensitivity analysis aims at assessing the influence of the landslide properties on the time-dependent predictions (e.g. time series of landslide displacements). Yet, two major difficulties arise: (1) Global sensitivity analysis require running the landslide model a high number of times (>1,000), which may become impracticable when the landslide model has a high computation time cost (>several hours); (2) Landslide model outputs are not scalar, but function of time, that is, they are n-dimensional vectors with n usually ranging from 100 to 1,000. In this article, I explore the use of a basis set expansion, such as principal component analysis, to reduce the output dimensionality to a few components, each of them being interpreted as a dominant mode of variation in the overall structure of the temporal evolution. The computationally intensive calculation of the Sobol’ indices for each of these components are then achieved through meta-modelling, that is, by replacing the landslide model by a “costless-to-evaluate” approximation (e.g. a projection pursuit regression model). The methodology combining “basis set expansion—meta-model—Sobol’ indices” is then applied to the Swiss La Frasse landslide to investigate the dynamic sensitivity analysis of the surface horizontal displacements to the slip surface properties during the pore pressure changes. I show how to extract information on the sensitivity of each main modes of temporal behaviour using a limited number (a few tens) of long-running simulations.

[1]  Jeremy Rohmer,et al.  Global sensitivity analysis of large-scale numerical landslide models based on Gaussian-Process meta-modeling , 2011, Comput. Geosci..

[2]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[3]  Bertrand Iooss,et al.  Global sensitivity analysis for models with spatially dependent outputs , 2009, 0911.1189.

[4]  Anestis Antoniadis,et al.  Spatio‐temporal metamodeling for West African monsoon , 2012 .

[5]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[6]  Jon C. Helton,et al.  Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models , 2009, Reliab. Eng. Syst. Saf..

[7]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[8]  Bertrand Iooss,et al.  Screening and metamodeling of computer experiments with functional outputs. Application to thermal-hydraulic computations , 2012, Reliab. Eng. Syst. Saf..

[9]  Paola Annoni,et al.  Sixth International Conference on Sensitivity Analysis of Model Output How to avoid a perfunctory sensitivity analysis , 2010 .

[10]  Robert B. Gramacy,et al.  Adaptive Design and Analysis of Supercomputer Experiments , 2008, Technometrics.

[11]  Pierre-Yves Hicher,et al.  Elementary Mechanics of Soil Behaviour: Saturated Remoulded Soils , 1994 .

[12]  L. Laloui,et al.  Geomechanical modeling of the Steinernase landslide (Switzerland) , 2009 .

[13]  Fernando Lopez-Caballero,et al.  Nonlinear numerical method for earthquake site response analysis I — elastoplastic cyclic model and parameter identification strategy , 2007 .

[14]  R. Bell,et al.  Natural Hazards and Earth System Sciences Quantitative risk analysis for landslides – Examples from Bı́ldudalur , NW-Iceland , 2004 .

[15]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[16]  N. A. S. Hamm,et al.  Variance-based sensitivity analysis of the probability of hydrologically induced slope instability , 2006, Comput. Geosci..

[17]  B. Bornhold,et al.  The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling , 2005 .

[18]  Andrea Saltelli,et al.  Sensitivity Analysis for Importance Assessment , 2002, Risk analysis : an official publication of the Society for Risk Analysis.

[19]  I. Sobol Global Sensitivity Indices for Nonlinear Mathematical Models , 2004 .

[20]  Manolis Papadrakakis,et al.  Reliability-based structural optimization using neural networks and Monte Carlo simulation , 2002 .

[21]  David Makowski,et al.  Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models , 2011, Reliab. Eng. Syst. Saf..

[22]  Lyesse Laloui,et al.  Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity , 2005 .

[23]  Thomas Glade,et al.  Quantitative risk analysis for landslides ‒ Examples from Bíldudalur, NW-Iceland , 2004 .

[24]  Lyesse Laloui,et al.  Hydro-mechanical modeling of crises of large landslides : application to the La Frasse Landslide , 2004 .

[25]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[26]  I. Sobol,et al.  Global sensitivity indices for nonlinear mathematical models. Review , 2005 .

[27]  I. Jolliffe Principal Component Analysis , 2002 .

[28]  William J. Elliot,et al.  Spatially and temporally distributed modeling of landslide susceptibility , 2006 .

[29]  D. Higdon,et al.  Computer Model Calibration Using High-Dimensional Output , 2008 .

[30]  T Sumner,et al.  A methodology for global-sensitivity analysis of time-dependent outputs in systems biology modelling , 2012, Journal of The Royal Society Interface.

[31]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[32]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[33]  William Spataro,et al.  A macroscopic collisional model for debris-flows simulation , 2007, Environ. Model. Softw..

[34]  Jérémy Rohmer,et al.  Global sensitivity analysis of large-scale numerical , 2011 .

[35]  Brian J. Williams,et al.  Sensitivity analysis when model outputs are functions , 2006, Reliab. Eng. Syst. Saf..

[36]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .