An efficient maximum entropy technique for 2-D isotropic random fields

A linear MEM (maximum-entropy spectral estimation method) algorithm for 2-D isotropic random fields is introduced. Unlike general 2-D covariances, isotropic covariance functions that are positive definite on a disk are known to be extendible. A computationally efficient procedure is developed for computing the MEM isotropic covariance function that is given over a finite disk of radius 2R. It is shown that the isotropic MEM problem has a linear solution and that it is equivalent to the problem of constructing the optimal linear filter for estimating the underlying isotropic field at a point on the boundary of a disk radius R, given noisy measurements of the field inside the disk. The procedure is guaranteed to yield a valid isotropic spectral estimate and is computationally efficient since it requires only O(BRL/sup 2/) operations, where L is the number of points used to discretize the interval (0, R) and B is the bandwidth in the wave-number plane of the spectrum that to be estimated. Examples are presented to illustrate the behaviour of the algorithm and its high-resolution property. >

[1]  G. Pólya,et al.  Fonctions entières et intégrales de fourier multiples , 1936 .

[2]  Stephen J. Wernecke,et al.  Maximum Entropy Image Reconstruction , 1977, IEEE Transactions on Computers.

[3]  Surendra Ranganath,et al.  Application of two dimensional spectral estimation in image restoration , 1981, ICASSP.

[4]  V. Hutson Integral Equations , 1967, Nature.

[5]  E. Weinstein,et al.  Confidence intervals for the maximum entropy spectrum , 1987, IEEE Trans. Acoust. Speech Signal Process..

[6]  James E. Barger,et al.  Underwater acoustic system analysis , 1985, Proceedings of the IEEE.

[7]  E. Robinson,et al.  Maximum entropy and the relationship of the partial autocorrelation to the reflection coefficients of a layered system , 1980 .

[8]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[9]  Eric W. Hansen,et al.  Fast Hankel transform algorithm , 1985, IEEE Trans. Acoust. Speech Signal Process..

[10]  J.H. McClellan,et al.  Multidimensional spectral estimation , 1982, Proceedings of the IEEE.

[11]  John N. Tsitsiklis,et al.  A fast algorithm for linear estimation of two- dimensional isotropic random fields , 1985, IEEE Trans. Inf. Theory.

[12]  G. Pólya,et al.  Fonctions entières et intégrales de Fourier multiples , 1936 .

[13]  A. Willsky,et al.  An eigenstructure approach for the retrieval of cylindrical harmonics , 1987 .

[14]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[15]  T. Marzetta Two-dimensional linear prediction: Autocorrelation arrays, minimum-phase prediction error filters, and reflection coefficient arrays , 1980 .

[16]  I. Rodríguez‐Iturbe,et al.  The design of rainfall networks in time and space , 1974 .

[17]  J. Cadzow,et al.  Two-dimensional spectral estimation , 1981 .

[18]  Benjamin Friedlander,et al.  A general lower bound for parametric spectrum estimation , 1984 .

[19]  A. Balakrishnan,et al.  Spectral theory of random fields , 1983 .

[20]  Rama Chellappa,et al.  A model-based approach for estimation of two-dimensional maximum entropy power spectra , 1985, IEEE Trans. Inf. Theory.

[21]  A. Blanc-Lapierre,et al.  Stationary and Isotropic Random Functions , 1965 .

[22]  M. Ekstrom,et al.  Two-dimensional spectral factorization with applications in recursive digital filtering , 1976 .

[23]  Israel Gohberg,et al.  On an extension problem, generalized fourier analysis, and an entropy formula , 1980 .

[24]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[25]  A. K. Cline,et al.  The Direct Estimation of Spatial Wavenumber Spectra of Atmospheric Variables , 1974 .

[26]  Salim E. Roucos,et al.  A two-dimensional maximum entropy spectral estimator , 1980, IEEE Trans. Inf. Theory.

[27]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[28]  L. Ronkin,et al.  Introduction to the Theory of Entire Functions of Several Variables , 1974 .

[29]  Ñ.,et al.  A NEW ALGORITHM FOR TWO-DIMENSIONAL MAXIMUM ENTROPY POWER SPECTRUM ESTIMATION , 2022 .

[30]  Carl E. Pearson,et al.  Functions of a complex variable - theory and technique , 2005 .

[31]  Walter Rudin,et al.  An extension theorem for positive-definite functions , 1970 .

[32]  A. Papoulis Systems and transforms with applications in optics , 1981 .

[33]  Arthur B. Baggeroer,et al.  Space/Time Random Processes and Optimum Array Processing , 1976 .

[34]  W. Rudin The extension problem for positive-definite functions , 1963 .

[35]  Georges Bienvenu,et al.  Adaptivity to background noise spatial coherence for high resolution passive methods , 1980, ICASSP.

[36]  J. Murray Spectral factorization and quarter-plane digital filters , 1978 .

[37]  David G. Long,et al.  Array signal processing , 1985, IEEE Trans. Acoust. Speech Signal Process..

[38]  D. Mook,et al.  An algorithm for the numerical evaluation of the Hankel and Abel transforms , 1983 .

[39]  J. Makhoul Spectral analysis of speech by linear prediction , 1973 .

[40]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[41]  S. DeGraaf,et al.  Improving the resolution of bearing in passive sonar arrays by eigenvalue analysis , 1981 .

[42]  S. Candel,et al.  Simultaneous calculation of Fourier-bessel transforms up to order N , 1981 .

[43]  J. Capon Maximum-likelihood spectral estimation , 1979 .

[44]  J. McClellan,et al.  Multidimensional MEM spectral estimation , 1982 .

[45]  M. Shinozuka,et al.  Digital simulation of random processes and its applications , 1972 .