Elasticity of some mantle crystal structures: 1. Pleonaste and hercynite spinel

The elasticity of high-pressure mantle phases can be characterized by using data for crystal-chemically similar compounds. The single-crystal elastic constants are determined as a function of pressure and temperature for pleonaste spinel (Mg0.75Fe0.36Al1.90O4) and at room conditions for hercynite spinel (FeAl2O4). The bulk modulus increases from 1.95 Mb for MgAl2O4 to 2.10 Mb for FeAl2O4. The pressure derivative of the shear constant CS = (C11 − C12)/2 is slightly negative for pleonaste. Low or negative values of the pressure derivatives of shear constants are characteristic of the spinel structure and imply a low kinetic barrier to phase transformations and diffusion. Compressional and shear velocities of the spinel phase of olivine are estimated as a function of mean atomic weight by using the pleonaste and hercynite data. In comparison with a velocity and density model of the earth's mantle, the compressional velocity data indicate an increase in mean atomic weight across the transition zone, whereas the shear velocity data indicate no increase.

[1]  R. Liebermann,et al.  Velocity‐density systematics for the olivine and spinel phases of Mg2SiO4‐Fe2SiO4 , 1970 .

[2]  R. Liebermann,et al.  Critical thermal gradients in the mantle , 1969 .

[3]  Chi‐yuen Wang Density and constitution of the mantle , 1970 .

[4]  Yoshikazu Ishikawa,et al.  Anomalous Elastic Properties of Fe2TiO4 , 1971 .

[5]  G. R. Barsch,et al.  Elastic constants of single‐crystal forsterite as a function of temperature and pressure , 1969 .

[6]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of polycrystals , 1962 .

[7]  P. Molnar,et al.  Distribution of stresses in the descending lithosphere from a global survey of focal‐mechanism solutions of mantle earthquakes , 1971 .

[8]  R. Verma,et al.  Elasticity of some high-density crystals , 1960 .

[9]  R. Gordon Diffusion creep in the Earth's mantle , 1965 .

[10]  Anthony W. England,et al.  Universal equations of state for oxides and silicates , 1969 .

[11]  L. Knopoff,et al.  Comments on the interrelationships between Grüneisen's parameter and shock and isothermal equations of state , 1969 .

[12]  D. J. Silversmith,et al.  A Modified Ultrasonic Pulse‐Echo‐Overlap Method for Determining Sound Velocities and Attenuation of Solids , 1969 .

[13]  D. H. Saunderson Pressure Dependence of the TA[100] Zone-Boundary Phonon Frequency in Rubidium Iodide , 1966 .

[14]  A. E. Ringwood,et al.  The system Mg2SiO4Fe2SiO4 at high pressures and temperatures , 1970 .

[15]  A. E. Ringwood,et al.  Phase transformations and the constitution of the mantle , 1970 .

[16]  A. England Equations of state of oxides and silicates and new data on the elastic properties of spinel, magnetite, and cadmium oxide. , 1970 .

[17]  R. N. Thurston Ultrasonic data and the thermodynamics of solids , 1965 .

[18]  F. Birch,et al.  Density and composition of mantle and core , 1964 .

[19]  A. E. Ringwood,et al.  High pressure transformations of spinels (I) , 1968 .

[20]  Leon Thomsen,et al.  Elastic shear moduli and crystal stability at high P and T , 1971 .

[21]  O. Nuttli,et al.  Travel-time curves and upper-mantle structure from long period S waves , 1967 .

[22]  Charles G. Sammis,et al.  The Pressure Dependence of the Elastic Constants of Cubic Crystals in the NaCl and Spinel Structures from a Lattice Model , 1970 .

[23]  O. Anderson,et al.  A proposed law of corresponding states for oxide compounds , 1966 .

[24]  Y. Ishikawa,et al.  Giant Magnetostriction Due to Jahn-Teller Distortion inFe2TiO4 , 1971 .

[25]  Mineo Kumazawa,et al.  Elastic moduli, pressure derivatives, and temperature derivatives of single‐crystal olivine and single‐crystal forsterite , 1969 .

[26]  R. N. Thurston Erratum: Effective Elastic Coefficients for Wave Propagation in Crystals under Stress [J. Acoust. Soc. Am. 37, 348–356 (1965)] , 1965 .

[27]  F. Press Earth models consistent with geophysical data , 1970 .

[28]  J. Weertman The creep strength of the Earth's mantle , 1970 .

[29]  D. L. Anderson,et al.  Shear Velocities and Elastic Parameters of the Mantle , 1969 .

[30]  F. Birch,et al.  Composition of the Earth's Mantle , 1937 .

[31]  G. A. Slack,et al.  FeAl 2 O 4 - MgAl 2 O 4 : Growth and Some Thermal, Optical, and Magnetic Properties of Mixed Single Crystals , 1964 .

[32]  M. Lewis Elastic Constants of Magnesium Aluminate Spinel , 1966 .

[33]  D. Chung,et al.  Elasticity and Equations of State of Olivines in the Mg2SiO4-Fe2SiO4 System , 1971 .

[34]  J. Parrott,et al.  The third-order elastic constants of quasi-isotropic materials , 1968 .

[35]  H. Saalfeld,et al.  Kationenverteilung und Strukturbeziehungen in Mg-Al-Spinellen , 1958 .

[36]  G. Barsch Relation between Third‐Order Elastic Constants of Single Crystals and Polycrystals , 1968 .

[37]  E. Schreiber,et al.  Elastic Moduli of Single‐Crystal Spinel at 25°C and to 2 kbar , 1967 .

[38]  Don L. Anderson,et al.  Revised shock‐wave equations of state for high‐pressure phases of rocks and minerals , 1971 .

[39]  A. Smakula,et al.  Precision Density Determination of Large Single Crystals by Hydrostatic Weighing , 1955 .

[40]  S. Shtrikman,et al.  On some variational principles in anisotropic and nonhomogeneous elasticity , 1962 .

[41]  J. H. Gieske,et al.  Pressure Dependence of the Elastic Constants of Single Crystalline Aluminum Oxide , 1968 .

[42]  E. Papadakis Effect of Multimode Guided Wave Propagation on Ultrasonic Phase Velocity Measurements: Problem and Remedy , 1969 .

[43]  G. A. Slack,et al.  Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 Crystals from 3 to 300K , 1962 .

[44]  Emmanuel P. Papadakis,et al.  Ultrasonic Phase Velocity by the Pulse‐Echo‐Overlap Method Incorporating Diffraction Phase Corrections , 1967 .

[45]  O. Anderson,et al.  Elastic constants of the central force model for cubic structures: Polycrystalline aggregates and instabilities , 1971 .

[46]  D. Chung,et al.  First Pressure Derivatives of Polycrystalline Elastic Moduli: Their Relation to Single‐Crystal Acoustic Data and Thermodynamic Relations , 1967 .

[47]  R. N. Thurston Effective Elastic Coefficients for Wave Propagation in Crystals under Stress , 1965 .

[48]  E. Kröner,et al.  Elastic moduli of perfectly disordered composite materials , 1967 .

[49]  Don L. Anderson,et al.  Chemical inhomogeneity of the mantle , 1968 .

[50]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .