Heegner points on Mumford–Tate curves

1 Shimura curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 2 Heegner points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 3 The regulator term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 4 The conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 5 Applications and re nements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

[1]  M. Murty,et al.  Mean values of derivatives of modular L-series , 1991 .

[2]  J. Silverman Advanced Topics in the Arithmetic of Elliptic Curves , 1994 .

[3]  A. Wiles,et al.  Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .

[4]  P. Schneider IwasawaL-functions of varieties over algebraic number fields , 1983 .

[5]  B. Mazur,et al.  Canonical Height Pairings via Biextensions , 1983 .

[6]  H. Darmon,et al.  Derived heights and generalized Mazur-Tate regulators , 1994 .

[7]  Karl Rubin,et al.  p-adicL-functions and rational points on elliptic curves with complex multiplication , 1992 .

[8]  Barry Mazur,et al.  Rational points of abelian varieties with values in towers of number fields , 1972 .

[9]  Kenneth A. Ribet,et al.  Modular elliptic curves and fermat's last theorem , 1993 .

[10]  B. Perrin-Riou Fonctions $L$ $p$-adiques, théorie d'Iwasawa et points de Heegner , 1987 .

[11]  Don Zagier,et al.  Heegner points and derivatives ofL-series , 1986 .

[12]  H. Carayol,et al.  Uniformisation p-adique des courbes de Shimura : les théorèmes de Čerednik et de Drinfeld , 1991 .

[13]  E. D. Shalit,et al.  p-adic periods and modular symbols of elliptic curves of prime conductor , 1995 .

[14]  D. P. Roberts Shimura curves analogous to X〓0〓(N) , 1989 .

[15]  B. Birch,et al.  Modular Functions of One Variable IV , 1975 .

[16]  A. Neron,et al.  Quasi-fonctions et Hauteurs sur les Varietes Abeliennes , 1965 .

[17]  L. Gerritzen,et al.  Schottky Groups and Mumford Curves , 1980 .

[18]  B. Perrin-Riou Fonctions L p-adiques d'une courbe elliptique et points rationnels , 1993 .

[19]  Barry Mazur,et al.  Onp-adic analogues of the conjectures of Birch and Swinnerton-Dyer , 1986 .

[20]  Loïc Merel,et al.  Bornes pour la torsion des courbes elliptiques sur les corps de nombres , 1996 .

[21]  Ralph Greenberg,et al.  p-adicL-functions andp-adic periods of modular forms , 1993 .

[22]  James S. Milne,et al.  Arithmetic Duality Theorems , 1987 .

[23]  H. Darmon,et al.  DERIVED P-ADIC HEIGHTS , 1995 .

[24]  David Mumford,et al.  An analytic construction of degenerating curves over complete local rings , 1972 .

[25]  H. Darmon Euler Systems and Rened Conjectures of Birch Swinnerton-Dyer Type , 1991 .

[26]  Kolyvagin's descent and Mordell-Weil groups over ring class fields. , 1990 .

[27]  V. Drinfel'd,et al.  Coverings of p-adic symmetric regions , 1976 .

[28]  Barry Mazur,et al.  Refined conjectures of the “Birch and Swinnerton-Dyer type” , 1987 .

[29]  H. Darmon A refined conjecture of Mazur-Tate type for Heegner points , 1992 .

[30]  I V Čerednik,et al.  UNIFORMIZATION OF ALGEBRAIC CURVES BY DISCRETE ARITHMETIC SUBGROUPS OF $ PGL_2(k_w)$ WITH COMPACT QUOTIENTS , 1976 .

[31]  J. Hoffstein,et al.  Nonvanishing theorems for L-functions of modular forms and their derivatives , 1990 .

[32]  Henri Darmon,et al.  Heegner points, p-adic L-functions, and the Cerednik-Drinfeld uniformization , 1998 .

[33]  P. Schneider p-adic height pairings I , 1982 .