Forecasting Intraday Trading Volume: A Kalman Filter Approach

An accurate forecast of intraday volume is a key aspect of algorithmic trading. This manuscript proposes a state-space model to forecast intraday trading volume via the Kalman filter and derives closed-form expectation-maximization (EM) solutions for model calibration. The model is extended to handle outliers in real-time market data by applying a sparse regularization technique. Empirical studies using thirty securities on eight exchanges show that the proposed model substantially outperforms the rolling means (RM) and the state-of-the-art Component Multiplicative Error Model (CMEM) by 64% and 29%, respectively, in volume prediction and by 15% and 9%, respectively, in Volume Weighted Average Price (VWAP) trading.

[1]  R. Shumway,et al.  AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .

[2]  Anat R. Admati,et al.  A Theory of Intraday Patterns: Volume and Price Variability , 1988 .

[3]  Laura T. Starks,et al.  An empirical analysis of the stock price-volume relationship , 1988 .

[4]  Marco Pagano,et al.  Trading Volume and Asset Liquidity , 1989 .

[5]  Prem C. Jain,et al.  The behavior of daily stock market trading volume , 1989 .

[6]  Robert E. Whaley,et al.  Intraday Price Change and Trading Volume Relations in the Stock and Stock Option Markets , 1990 .

[7]  William A. Brock,et al.  Periodic market closure and trading volume: A model of intraday bids and asks☆ , 1992 .

[8]  Jiang Wang,et al.  Trading Volume and Serial Correlation in Stock Returns , 1992 .

[9]  J. H. Mulherin,et al.  Trading Halts and Market Activity: An Analysis of Volume at the Open and the Close , 1992 .

[10]  Paul J. Seguin,et al.  Volume, Volatility, and New York Stock Exchange Trading Halts , 1994 .

[11]  T. Andersen Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility , 1996 .

[12]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[13]  D. Bertsimas,et al.  Optimal control of execution costs , 1998 .

[14]  D. McMillan,et al.  The intraday relationship between volume and volatility in LIFFE futures markets , 1999 .

[15]  Gur Huberman,et al.  Optimal Liquidity Trading , 2000 .

[16]  Jiang Wang,et al.  Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory , 2000 .

[17]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[18]  Bong‐Soo Lee,et al.  The dynamic relationship between stock returns and trading volume: Domestic and cross-country evidence , 2002 .

[19]  Maosen Zhong,et al.  Intraday Trading Volume and Return Volatility of the Djia Stocks: A Note , 2002 .

[20]  Robert Hudson,et al.  Intra Day Bid-Ask Spreads, Trading Volume and Volatility: Recent Empirical Evidence from the London Stock Exchange , 2004 .

[21]  R. Almgren,et al.  Direct Estimation of Equity Market Impact , 2005 .

[22]  J. Białkowski,et al.  Improving VWAP strategies: A dynamical volume approach , 2006 .

[23]  Phillippe Coquet The impact of competition , 2007 .

[24]  Petter N. Kolm,et al.  Quantitative Equity Investing: Techniques and Strategies , 2010 .

[25]  Stephen P. Boyd,et al.  Real-Time Convex Optimization in Signal Processing , 2010, IEEE Signal Processing Magazine.

[26]  Fabrizio Cipollini,et al.  Intra-Daily Volume Modeling and Prediction for Algorithmic Trading , 2010 .

[27]  Mark E. McBride,et al.  Intraday trading patterns in an intelligent autonomous agent-based stock market , 2011 .

[28]  Syed Mujahid Hussain The Intraday Behaviour of Bid-Ask Spreads, Trading Volume and Return Volatility: Evidence from DAX30 , 2011 .

[29]  Julien Chevallier,et al.  On the volatility-volume relationship in energy futures markets using intraday data , 2012 .

[30]  David Easley,et al.  Flow Toxicity and Liquidity in a High Frequency World , 2012 .

[31]  A. Park,et al.  The Impact of Competition and Information on Intraday Trading , 2013 .

[32]  Daniel Pérez Palomar,et al.  Robust Optimization of Order Execution , 2015, IEEE Transactions on Signal Processing.

[33]  Predicting Intraday Trading Volume and Volume Percentages , 2018, The Journal of Trading.