Advanced Tense Logic

In this chapter we consider the tense (or temporal) logic with until and since connectives over general linear time. We will call this logic US/LT. This logic is an extension of Prior’s original temporal logic of F and P over linear time [Prior, 1957], via the introduction of the more expressive connectives of Kamp’s U for “until” and S for “since” [Kamp, 1968b]. U closely mimics the natural language construct “until” with U(A, B) holding when A is constantly true from now up until a future time at which B holds. S is similar with respect to the past. We will see that U and S do indeed extend the expressivemess of the temporal language.

[1]  Edward L. Robertson Structure of complexity in the weak monadic second-order theories of the natural numbers , 1974, STOC '74.

[2]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[3]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[4]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[5]  Michael Fisher,et al.  A Normal Form for Temporal Logics and its Applications in Theorem-Proving and Execution , 1997, J. Log. Comput..

[6]  Yaacov Choueka,et al.  Theories of Automata on omega-Tapes: A Simplified Approach , 1974, J. Comput. Syst. Sci..

[7]  Kees Doets,et al.  Monadic Π11-Theories of Π11-Properties , 1989, Notre Dame J. Formal Log..

[8]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[9]  Marcus Kracht,et al.  Properties of independently axiomatizable bimodal logics , 1991, Journal of Symbolic Logic.

[10]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[11]  Alberto Zanardo A complete deductive-system for since-until branching-time logic , 1991, J. Philos. Log..

[12]  Jaakko Hintikka,et al.  Time And Modality , 1958 .

[13]  Amihood Amir Separation in Nonlinear Time Models , 1985, Inf. Control..

[14]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[15]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[16]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[17]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[18]  Dov M. Gabbay,et al.  Chapter 13 – Labelled Deductive Systems , 2003 .

[19]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .

[20]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[21]  Michael Zakharyaschev,et al.  On the Products of Linear Modal Logics , 2001, J. Log. Comput..

[22]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[23]  D. Gabbay,et al.  Temporal Logic Mathematical Foundations and Computational Aspects , 1994 .

[24]  Steven T. Kuhn The domino relation: Flattening a two-dimensional logic , 1989, J. Philos. Log..

[25]  Dov M. Gabbay,et al.  An Axiomitization of the Temporal Logic with Until and Since over the Real Numbers , 1990, J. Log. Comput..

[26]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[27]  Johan van Benthem,et al.  The Logic of Time , 1983 .

[28]  Maarten Marx,et al.  Multi-dimensional modal logic , 1997, Applied logic series.

[29]  Yde Venema,et al.  Derivation rules as anti-axioms in modal logic , 1993, Journal of Symbolic Logic.

[30]  A. Nakamura,et al.  On the size of refutation Kripke models for some linear modal and tense logics , 1980 .

[31]  H. Läuchli,et al.  On the elementary theory of linear order , 1966 .

[32]  K. Konolige A deduction model of belief , 1986 .

[33]  Marcelo Finger Handling database updates in two-dimensional temporal logic , 1992, J. Appl. Non Class. Logics.

[34]  Wilfrid Hodges,et al.  Logical features of Horn Clauses , 1993 .

[35]  Maarten Marx,et al.  Complexity of Products of Modal Logics , 1999, J. Log. Comput..

[36]  Dov M. Gabbay,et al.  Combining Temporal Logic Systems , 1996, Notre Dame J. Formal Log..

[37]  Dov M. Gabbay,et al.  The Declarative Past and Imperative Future: Executable Temporal Logic for Interactive Systems , 1987, Temporal Logic in Specification.

[38]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[39]  John P. Burgess,et al.  Basic Tense Logic , 1984 .

[40]  Dov M. Gabbay,et al.  Adding a temporal dimension to a logic system , 1992, J. Log. Lang. Inf..

[41]  John P. Burgess,et al.  The decision problem for linear temporal logic , 1985, Notre Dame J. Formal Log..

[42]  Amir Pnueli,et al.  The Glory of the Past , 1985, Logic of Programs.

[43]  Abraham Robinson,et al.  Elementary properties of ordered abelian groups , 1960 .

[44]  M. Rabin Automata on Infinite Objects and Church's Problem , 1972 .

[45]  Mark Reynolds,et al.  Axiomatizing U and S over Integer Time , 1994, ICTL.

[46]  Johan van Benthem,et al.  Exploring logical dynamics , 1996, Studies in logic, language and information.

[47]  David E. Muller,et al.  Infinite sequences and finite machines , 1963, SWCT.

[48]  R. A. Bull,et al.  Basic Modal Logic , 1984 .

[49]  John P. Burgess,et al.  Axioms for tense logic. I. "Since" and "until" , 1982, Notre Dame J. Formal Log..

[50]  Zohar Manna,et al.  The anchored version of the temporal framework , 1988, REX Workshop.

[51]  D. Gabbay An Irreflexivity Lemma with Applications to Axiomatizations of Conditions on Tense Frames , 1981 .

[52]  Ming Xu On some U,S-tense logics , 1988, J. Philos. Log..

[53]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[54]  Nuel D. Belnap,et al.  INDETERMINISM AND THE THIN RED LINE , 1994 .

[55]  Amir Pnueli,et al.  Is the Interesting Part of Process Logic Uninteresting? A Translation from PL to PDL , 1984, SIAM J. Comput..

[56]  E. Emerson,et al.  Modalities for model checking (extended abstract): branching time strikes back , 1985, ACM-SIGACT Symposium on Principles of Programming Languages.

[57]  Mark Reynolds,et al.  An axiomatization for until and since over the reals without the IRR rule , 1992, Stud Logica.

[58]  Mark Reynolds,et al.  A Decidable Temporal Logic of Parallelism , 1997, Notre Dame J. Formal Log..

[59]  D.M. Gabbay,et al.  N-Prolog: An Extension of Prolog with Hypothetical Implication II - Logical Foundations, and Negation as Failure , 1985, J. Log. Program..

[60]  R. Lyndon While,et al.  Controlling the behaviour of functional language systems , 1987, FPCA.

[61]  R. Thomason Combinations of Tense and Modality , 2002 .

[62]  Alexander Moshe Rabinovich,et al.  On the Decidability of Continuous Time Specification Formalisms , 1998, J. Log. Comput..

[63]  Dov M. Gabbay,et al.  Products of Modal Logics, Part 1 , 1998, Log. J. IGPL.

[64]  Pierre Wolper,et al.  The Complementation Problem for Büchi Automata with Appplications to Temporal Logic , 1987, Theor. Comput. Sci..

[65]  Zohar Manna,et al.  Temporal Verification of Simulation and Refinement , 1993, REX School/Symposium.

[66]  Kees Doets Monadic Π 1 1 -Theories of Π 1 1 -Properties. , 1989 .

[67]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[68]  Yde Venema,et al.  Expressiveness and Completeness of an Interval Tense Logic , 1990, Notre Dame J. Formal Log..

[69]  Yde Venema Completeness via Completeness , 1993 .

[70]  Dov M. Gabbay,et al.  Temporal Logic: Mathematical Foundations and Computational Aspects: Volume 2 , 1994 .

[71]  Maarten Marx,et al.  Undecidability of Compass Logic , 1999, J. Log. Comput..