The distribution of stars around the Milky Way's black hole III: Comparison with simulations

The distribution of stars around a massive black hole (MBH) has been addressed in stellar dynamics for the last four decades by a number of authors. Because of its proximity, the centre of the Milky Way is the only observational test case where the stellar distribution can be accurately tested. Past observational work indicated that the brightest giants in the Galactic Centre (GC) may show a density deficit around the central black hole, not a cusp-like distribution, while we theoretically expect the presence of a stellar cusp. We here present a solution to this long-standing problem. We performed direct-summation $N-$body simulations of star clusters around massive black holes and compared the results of our simulations with new observational data of the GC's nuclear cluster. We find that after a Hubble time, the distribution of bright stars as well as the diffuse light follow power-law distributions in projection with slopes of $\Gamma \approx 0.3$ in our simulations. This is in excellent agreement with what is seen in star counts and in the distribution of the diffuse stellar light extracted from adaptive-optics (AO) assisted near-infrared observations of the GC. Our simulations also confirm that there exists a missing giant star population within a projected radius of a few arcsec around Sgr A*. Such a depletion of giant stars in the innermost 0.1 pc could be explained by a previously present gaseous disc and collisions, which means that a stellar cusp would also be present at the innermost radii, but in the form of degenerate compact cores.

[1]  P. Amaro-Seoane,et al.  The distribution of stars around the Milky Way's central black hole. I. Deep star counts , 2017, 1701.03816.

[2]  P. Amaro-Seoane Relativistic dynamics and extreme mass ratio inspirals , 2012, Living reviews in relativity.

[3]  P. Amaro-Seoane,et al.  The distribution of stars around the Milky Way's central black hole II: Diffuse light from sub-giants and dwarfs , 2017, 1701.03817.

[4]  H. Baumgardt N-body modelling of globular clusters: masses, mass-to-light ratios and intermediate-mass black holes , 2016, 1609.08794.

[5]  Jessica R. Lu,et al.  AN IMPROVED DISTANCE AND MASS ESTIMATE FOR SGR A* FROM A MULTISTAR ORBIT ANALYSIS , 2016, 1607.05726.

[6]  T. Bogdanović,et al.  CAN STAR–DISK COLLISIONS EXPLAIN THE MISSING RED GIANTS PROBLEM IN THE GALACTIC CENTER? , 2016, 1602.03527.

[7]  Jessica R. Lu,et al.  DISCOVERY OF LOW-METALLICITY STARS IN THE CENTRAL PARSEC OF THE MILKY WAY , 2015, 1506.07891.

[8]  J. Gair,et al.  Research Update on Extreme-Mass-Ratio Inspirals , 2014, 1410.0958.

[9]  N. Neumayer,et al.  The nuclear cluster of the Milky Way: our primary testbed for the interaction of a dense star cluster with a massive black hole , 2014, 1411.4504.

[10]  Wei Gao,et al.  Descope of the ALIA mission , 2014, 1410.7296.

[11]  D. Aharon,et al.  FORMATION AND EVOLUTION OF NUCLEAR STAR CLUSTERS WITH IN SITU STAR FORMATION: NUCLEAR CORES AND AGE SEGREGATION , 2014, 1409.5121.

[12]  M. Schultheis,et al.  Chemical Abundances of M giants in the Galactic Center: a Single Metal-Rich Population with Low [alpha/Fe] , 2014, 1409.2515.

[13]  Andreas Burkert,et al.  THE GALACTIC CENTER CLOUD G2 AND ITS GAS STREAMER , 2014 .

[14]  A. Loeb,et al.  EFFECTS OF INTERMEDIATE MASS BLACK HOLES ON NUCLEAR STAR CLUSTERS , 2014, 1403.3094.

[15]  F. Antonini ON THE DISTRIBUTION OF STELLAR REMNANTS AROUND MASSIVE BLACK HOLES: SLOW MASS SEGREGATION, STAR CLUSTER INSPIRALS, AND CORRELATED ORBITS , 2014, 1402.4865.

[16]  P. Amaro-Seoane,et al.  THE FRAGMENTING PAST OF THE DISK AT THE GALACTIC CENTER: THE CULPRIT FOR THE MISSING RED GIANTS , 2013, 1310.0458.

[17]  R. Genzel,et al.  THE NUCLEAR CLUSTER OF THE MILKY WAY: TOTAL MASS AND LUMINOSITY , 2013, Proceedings of the International Astronomical Union.

[18]  F. K. Liu,et al.  IS THERE AN INTERMEDIATE MASSIVE BLACK HOLE IN THE GALACTIC CENTER: IMPRINTS ON THE STELLAR TIDAL-DISRUPTION RATE , 2012, 1211.4609.

[19]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[20]  Keigo Nitadori,et al.  Accelerating nbody6 with graphics processing units , 2012, 1205.1222.

[21]  Bernard F. Schutz,et al.  Low-frequency gravitational-wave science with eLISA/NGO , 2012, 1202.0839.

[22]  Bernard F. Schutz,et al.  Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime , 2012, 1201.3621.

[23]  Fabio Antonini,et al.  DISSIPATIONLESS FORMATION AND EVOLUTION OF THE MILKY WAY NUCLEAR STAR CLUSTER , 2011, 1110.5937.

[24]  A. Sternberg,et al.  THE STAR FORMATION HISTORY OF THE MILKY WAY'S NUCLEAR STAR CLUSTER , 2011, 1110.1633.

[25]  D. Merritt,et al.  LONG-TERM EVOLUTION OF MASSIVE BLACK HOLE BINARIES. IV. MERGERS OF GALAXIES WITH COLLISIONALLY RELAXED NUCLEI , 2011, 1107.4095.

[26]  P. Amaro-Seoane,et al.  The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth , 2010, 1010.5781.

[27]  R. Genzel,et al.  The galactic center massive black hole and nuclear star cluster , 2010, 1006.0064.

[28]  D. Merritt THE DISTRIBUTION OF STARS AND STELLAR REMNANTS AT THE GALACTIC CENTER , 2009, 0909.1318.

[29]  K. Mužić,et al.  Peering through the veil: near-infrared photometry and extinction for the Galactic nuclear star cluster , 2009, 0912.1273.

[30]  P. Kroupa,et al.  Constraining the initial mass function of stars in the Galactic Centre , 2009, 0910.4960.

[31]  P. Amaro-Seoane,et al.  ON STRONG MASS SEGREGATION AROUND A MASSIVE BLACK HOLE: IMPLICATIONS FOR LOWER-FREQUENCY GRAVITATIONAL-WAVE ASTROPHYSICS , 2009, 0910.3206.

[32]  Pasadena,et al.  HIGH ANGULAR RESOLUTION INTEGRAL-FIELD SPECTROSCOPY OF THE GALAXY'S NUCLEAR CLUSTER: A MISSING STELLAR CUSP? , 2009, 0908.0311.

[33]  A. Just,et al.  On the dissolution of star clusters in the Galactic Centre - I. Circular orbits , 2009, 0906.4459.

[34]  D. Merritt,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 PERTURBATIONS OF INTERMEDIATE-MASS BLACK HOLES ON STELLAR ORBITS IN THE GALACTIC CENTER , 2022 .

[35]  A. Eckart,et al.  Composition of the galactic center star cluster. Population analysis from adaptive optics narrow ban , 2009, 0903.2135.

[36]  M. Davies,et al.  Red giant stellar collisions in the Galactic Centre , 2008, 0811.3111.

[37]  T. Alexander,et al.  STRONG MASS SEGREGATION AROUND A MASSIVE BLACK HOLE , 2008, 0808.3150.

[38]  H. Baumgardt,et al.  Tracing Intermediate-Mass Black Holes in the Galactic Centre , 2007, Proceedings of the International Astronomical Union.

[39]  T. Ebisuzaki,et al.  Orbital Evolution of an IMBH in the Galactic Nucleus with a Massive Central Black Hole , 2007 .

[40]  A. Eckart,et al.  The structure of the nuclear stellar cluster of the Milky Way , 2006, Proceedings of the International Astronomical Union.

[41]  S. Zwart,et al.  "Ejection of hypervelocity stars from the Galactic Centre by intermediate-mass black holes" , 2006, astro-ph/0607455.

[42]  Pau Amaro-Seoane,et al.  Stellar Remnants in Galactic Nuclei: Mass Segregation , 2006 .

[43]  T. Paumard,et al.  The Two Young Star Disks in the Central Parsec of the Galaxy: Properties, Dynamics, and Formation , 2006, astro-ph/0601268.

[44]  T. Ebisuzaki,et al.  The Ecology of Star Clusters and Intermediate-Mass Black Holes in the Galactic Bulge , 2005, astro-ph/0511397.

[45]  Riken,et al.  Evolution of Galactic Nuclei. I. orbital evolution of IMBH , 2005, astro-ph/0511782.

[46]  P. Hut,et al.  Which Globular Clusters Contain Intermediate-Mass Black Holes? , 2004, astro-ph/0410597.

[47]  T. Ebisuzaki,et al.  Massive Black Holes in Star Clusters. II. Realistic Cluster Models , 2004, astro-ph/0406231.

[48]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[49]  P. Amaro-Seoane,et al.  Accretion of stars on to a massive black hole: a realistic diffusion model and numerical studies , 2004, astro-ph/0401163.

[50]  S. Tremaine,et al.  Ejection of Hypervelocity Stars by the (Binary) Black Hole in the Galactic Center , 2003, astro-ph/0309084.

[51]  Mark Morris,et al.  Dynamical Friction on Star Clusters near the Galactic Center , 2003, astro-ph/0307271.

[52]  Milos Milosavljevic,et al.  The Need for a Second Black Hole at the Galactic Center , 2003, astro-ph/0306074.

[53]  J. Makino,et al.  On the Central Structure of M15 , 2002, astro-ph/0210133.

[54]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[55]  S. Aarseth From NBODY1 to NBODY6: The Growth of an Industry , 1999 .

[56]  M. Davies,et al.  Red giant collisions in the Galactic Centre , 1999, astro-ph/9907309.

[57]  T. Alexander,et al.  The Distribution of Stars near the Supermassive Black Hole in the Galactic Center , 1999, astro-ph/9907241.

[58]  M. Davies,et al.  The destructive effects of binary encounters on red giants in the Galactic Centre , 1998 .

[59]  Alfred Krabbe,et al.  The Dark Mass Concentration in the Central Parsec of the Milky Way , 1996 .

[60]  Jeremiah P. Ostriker,et al.  Dynamical Evolution of Globular Clusters , 1996 .

[61]  R. Wolf,et al.  Star distribution around a massive black hole in a globular cluster. II. Unequal star masses , 1977 .

[62]  Richard A. Wolf,et al.  Star distribution around a massive black hole in a globular cluster , 1976 .

[63]  I. McLure Classical and Quantum , 1971 .

[64]  Ivan R. King,et al.  The structure of star clusters. III. Some simple dvriamical models , 1966 .