Applying free random variables to random matrix analysis of financial data. Part I: The Gaussian case
暂无分享,去创建一个
Jerzy Jurkiewicz | Maciej A. Nowak | Andrzej Jarosz | Gábor Papp | Z. Burda | J. Jurkiewicz | A. Jarosz | M. Nowak | G. Papp | I. Zahed | Ismail Zahed | Zdzisław Burda
[1] Gilles O. Zumbach,et al. Volatility processes and volatility forecast with long memory , 2002 .
[2] Mantegna,et al. Taxonomy of stock market indices , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[3] S. Simon,et al. Eigenvalue density of correlated complex random Wishart matrices. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[4] E. J. Gumbel,et al. Statistics of Extremes. , 1960 .
[5] R. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .
[6] Signal and noise in financial correlation matrices , 2003, cond-mat/0312496.
[7] Free Extreme Values , 2005, math/0501274.
[8] T. W. Epps. Comovements in Stock Prices in the Very Short Run , 1979 .
[9] Philippe Biane,et al. Free diffusions, free entropy and free Fisher information , 2001 .
[10] Yannick Malevergne,et al. Collective origin of the coexistence of apparent random matrix theory noise and of factors in large sample correlation matrices , 2002, cond-mat/0210115.
[11] Imre Kondor,et al. Estimated correlation matrices and portfolio optimization , 2003, cond-mat/0305475.
[12] Noh. Model for correlations in stock markets , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[13] Analysis of delay correlation matrices , 2006, cond-mat/0601279.
[14] J. Bouchaud,et al. Theory Of Financial Risk And Derivative Pricing , 2000 .
[15] M. Potters,et al. Exponential Weighting and Random-Matrix-Theory-Based Filtering of Financial Covariance Matrices for Portfolio Optimization , 2004, cond-mat/0402573.
[16] V. Plerou,et al. Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series , 1999, cond-mat/9902283.
[17] M. Fréchet. Sur la loi de probabilité de l'écart maximum , 1928 .
[18] Stefan Thurner,et al. Random matrix ensembles of time-lagged correlation matrices: derivation of eigenvalue spectra and analysis of financial time-series , 2006 .
[19] Yan V. Fyodorov. Recent Perspectives in Random Matrix Theory and Number Theory: Introduction to the random matrix theory: Gaussian Unitary Ensemble and beyond , 2005 .
[20] Ronald L. Graham,et al. Concrete mathematics - a foundation for computer science , 1991 .
[21] David Tse,et al. Linear Multiuser Receivers: Effective Interference, Effective Bandwidth and User Capacity , 1999, IEEE Trans. Inf. Theory.
[22] Z. Burda,et al. Spectral properties of empirical covariance matrices for data with power-law tails. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] Z. Burda,et al. Levy Matrices and Financial Covariances , 2001 .
[24] K. Shadan,et al. Available online: , 2012 .
[25] E. Gumbel,et al. Les valeurs extrêmes des distributions statistiques , 1935 .
[26] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[27] Jean-Philippe Bouchaud,et al. Financial Applications of Random Matrix Theory: Old Laces and New Pieces , 2005 .
[28] J. Bouchaud,et al. RANDOM MATRIX THEORY AND FINANCIAL CORRELATIONS , 2000 .
[29] C. Tracy,et al. Introduction to Random Matrices , 1992, hep-th/9210073.
[30] Ralf R. Müller,et al. A random matrix model of communication via antenna arrays , 2002, IEEE Trans. Inf. Theory.
[31] G. Hooft. A Planar Diagram Theory for Strong Interactions , 1974 .
[32] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[33] W. Sharpe. CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .
[34] A. Zee. Law of addition in random matrix theory , 1996 .
[35] Jaroslaw Kwapien,et al. Quantifying the dynamics of financial correlations , 2001 .
[36] Heidelberg,et al. A New Method to Estimate the Noise in Financial Correlation Matrices , 2002, cond-mat/0206577.
[37] 2D QUANTUM GRAVITY,MATRIX MODELS AND GRAPH COMBINATORICS , 2004, math-ph/0406013.
[38] Anne Boutet de Monvel,et al. Some Elementary Results around the Wigner Semicircle Law , 2001 .
[39] The planar sector of field theories , 1982 .
[40] Jens Svensson. The asymptotic spectrum of the EWMA covariance estimator , 2007 .
[41] R. Fisher,et al. Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.
[42] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[43] Jorge Mina,et al. Return to RiskMetrics: The Evolution of a Standard , 2001 .
[44] Maciej A. Nowak,et al. Non-Hermitian random matrix models: Free random variable approach , 1997 .
[45] J. Wishart. THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .
[46] D. Voiculescu. Limit laws for Random matrices and free products , 1991 .
[47] Imre Kondor,et al. Noisy covariance matrices and portfolio optimization , 2002 .
[48] J. Bouchaud,et al. Rational Decisions, Random Matrices and Spin Glasses , 1998, cond-mat/9801209.
[49] J. W. Silverstein,et al. On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .
[50] P. A. P. Moran,et al. An introduction to probability theory , 1968 .
[51] János Kertész,et al. Modeling the Epps effect of cross correlations in asset prices , 2007, SPIE International Symposium on Fluctuations and Noise.
[52] Z. Burda,et al. Spectral moments of correlated Wishart matrices. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[53] V. Marčenko,et al. DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .
[54] J. Hull. Options, Futures, and Other Derivatives , 1989 .
[55] Z. Burda,et al. Is Econophysics a Solid Science , 2003, cond-mat/0301096.
[56] T. Bollerslev,et al. Generalized autoregressive conditional heteroskedasticity , 1986 .
[57] Antonia Maria Tulino,et al. Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.
[58] Z. Burda,et al. Signal and Noise in Correlation Matrix , 2003, cond-mat/0305627.
[59] Jerzy Jurkiewicz,et al. Free random Lévy and Wigner-Lévy matrices. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[60] Various shades of blue's functions , 1997, hep-th/9710103.
[61] J. H. Lint. Concrete mathematics : a foundation for computer science / R.L. Graham, D.E. Knuth, O. Patashnik , 1990 .
[62] P. J. Forrester,et al. Developments in random matrix theory , 2003, cond-mat/0303207.
[63] H. Iemoto. Modelling the persistence of conditional variances , 1986 .
[64] J. Jurkiewicz,et al. On diffusion of large matrices , 2005 .
[65] R. Speicher. Multiplicative functions on the lattice of non-crossing partitions and free convolution , 1994 .
[66] Ralf R. Muller. A random matrix model of communication via antenna arrays , 2002 .
[67] V. Plerou,et al. Random matrix approach to cross correlations in financial data. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[68] Eigenvalue density of empirical covariance matrix for correlated samples , 2005, cond-mat/0508451.
[69] J. Bouchaud,et al. Large dimension forecasting models and random singular value spectra , 2005, physics/0512090.
[70] T. Guhr,et al. RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.
[71] W. Weibull. A Statistical Distribution Function of Wide Applicability , 1951 .
[72] G. Biroli,et al. The Student ensemble of correlation matrices: eigenvalue spectrum and Kullback-Leibler entropy , 2007, 0710.0802.
[73] Gilles O. Zumbach,et al. The Riskmetrics 2006 Methodology , 2007 .
[74] Gregory Connor,et al. How much structure is best? A comparison of market model, factor model and unstructured equity covariance matrices , 2008 .
[75] The Wick theorem for non-Gaussian distributions and its application for noise filtering of correlated q-Exponentialy distributed random variables , 2004, math-ph/0411020.
[76] MASTERING THE MASTER FIELD , 1994, hep-th/9411021.
[77] S. Péché,et al. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.
[78] Z. Burda,et al. Free random Lévy matrices. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.
[79] Z. Burda,et al. Free Lévy matrices and financial correlations , 2001, cond-mat/0103109.
[80] STABLE LAWS AND DOMAINS OF ATTRACTION IN FREE PROBABILITY THEORY , 1999, math/9905206.
[81] R. Speicher,et al. Spectra of Hamiltonians with generalized single-site dynamical disorder , 1994, cond-mat/9404037.
[82] O. Johnson. Free Random Variables , 2004 .
[83] Maciej A. Nowak,et al. Random matrix filtering in portfolio optimization , 2005 .
[84] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .
[85] J. Bouchaud,et al. Noise Dressing of Financial Correlation Matrices , 1998, cond-mat/9810255.
[86] Free random Lévy variables and financial probabilities , 2001, cond-mat/0103140.
[87] Romuald A. Janik,et al. Multiplying unitary random matrices—universality and spectral properties , 2003 .
[89] M. Oshikawa,et al. Random matrix theory analysis of cross correlations in financial markets. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[90] I. Kondor,et al. Noisy Covariance Matrices and Portfolio Optimization II , 2002, cond-mat/0205119.
[91] M. Tumminello,et al. Hierarchically nested factor model from multivariate data , 2007 .