The neuroscience of grasping

People have always been fascinated by the exquisite precision and flexibility of the human hand. When hand meets object, we confront the overlapping worlds of sensorimotor and cognitive functions. We reach for objects, grasp and lift them, manipulate them and use them to act on other objects. This review examines one of these actions — grasping. Recent research in behavioural neuroscience, neuroimaging and electrophysiology has the potential to reveal where in the brain the process of grasping is organized, but has yet to address several questions about the sensorimotor transformations that relate to the control of the hands.

[1]  K. N. Dollman,et al.  - 1 , 1743 .

[2]  M. Ishihara,et al.  The Hand; Its Mechanism and Vital Endowments, as Evincing Design , 1852, The British and Foreign Medico-Chirurgical Review.

[3]  D. Denny-Brown DISINTEGRATION OF MOTOR FUNCTION RESULTING FROM CEREBRAL LESIONS , 1950, The Journal of nervous and mental disease.

[4]  L. Wilkins The Pyramidal Tract—Its Status in Medicine , 1955, Neurology.

[5]  A. M. Lassek,et al.  The pyramidal tract : its status in medicine , 1956 .

[6]  D. G. Lawrence,et al.  The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. , 1968, Brain : a journal of neurology.

[7]  D. G. Lawrence,et al.  The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. , 1968, Brain : a journal of neurology.

[8]  C. H. Vanderwolf,et al.  The relation between hand preference and the performance of individual finger movements by left and right hands. , 1970, Brain : a journal of neurology.

[9]  R Weinberg,et al.  New Concepts... , 1995 .

[10]  D. G. Lawrence,et al.  The development of motor control in the rhesus monkey: evidence concerning the role of corticomotoneuronal connections. , 1976, Brain : a journal of neurology.

[11]  Donald G. Stein,et al.  Effects of posterior parietal lesions on visually guided behavior in monkeys , 1978, Neuropsychologia.

[12]  A. M. Smith,et al.  Neuronal activity in cerebellar cortex related to control of prehensile force. , 1981, Journal of neurophysiology.

[13]  B. Bergum,et al.  Attention and performance IX , 1982 .

[14]  R. Lemon,et al.  Corticospinal neurons with a special role in precision grip , 1983, Brain Research.

[15]  M. Jeannerod The timing of natural prehension movements. , 1984, Journal of motor behavior.

[16]  G. Rizzolatti,et al.  Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey , 1985, Behavioural Brain Research.

[17]  M. Jeannerod Mechanisms of visuomotor coordination: A study in normal and brain-damaged subjects , 1986, Neuropsychologia.

[18]  R. L. Susman Hand of Paranthropus robustus from Member 1, Swartkrans: fossil evidence for tool behavior. , 1988, Science.

[19]  M. Schieber Individuated finger movements of rhesus monkeys: a means of quantifying the independence of the digits. , 1991, Journal of neurophysiology.

[20]  G. Rizzolatti,et al.  Influence of different types of grasping on the transport component of prehension movements , 1991, Neuropsychologia.

[21]  C. MacKenzie,et al.  The effects of object weight on the kinematics of prehension. , 1991, Journal of motor behavior.

[22]  C L MacKenzie,et al.  Is object texture a constraint on human prehension?: kinematic evidence. , 1991, Journal of motor behavior.

[23]  L. Jakobson,et al.  A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia , 1991, Neuropsychologia.

[24]  R. Eckhorn,et al.  A new method for the insertion of multiple microprobes into neural and muscular tissue, including fiber electrodes, fine wires, needles and microsensors , 1993, Journal of Neuroscience Methods.

[25]  M. Christel Grasping techniques and hand preferences in Hominoidea , 1993 .

[26]  Holger Preuschoft,et al.  Hands of Primates , 1993 .

[27]  R. Porter,et al.  Corticospinal Function and Voluntary Movement , 1993 .

[28]  Umberto Castiello,et al.  The bilateral reach to grasp movement , 1993, Behavioural Brain Research.

[29]  M. Jeannerod,et al.  Impairment of grasping movements following a bilateral posterior parietal lesion , 1994, Neuropsychologia.

[30]  A kinematic analysis of human prehension movements , 1994 .

[31]  Umberto Castiello,et al.  Insights into the reach to grasp movement , 1994 .

[32]  H. Sakata,et al.  Deficit of hand preshaping after muscimol injection in monkey parietal cortex , 1994, Neuroreport.

[33]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[34]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[35]  B. Edin,et al.  Skin strain patterns provide kinaesthetic information to the human central nervous system. , 1995, The Journal of physiology.

[36]  Giacomo Rizzolatti,et al.  S-2-1 Anatomo-functional organization of the agranular frontal cortex in primates , 1995 .

[37]  G. Savelsbergh,et al.  The role of fragility information in the guidance of the precision grip , 1996 .

[38]  J. Flanagan,et al.  Hand and brain : the neurophysiology and psychology of hand movements , 1996 .

[39]  Scott T. Grafton,et al.  Functional anatomy of pointing and grasping in humans. , 1996, Cerebral cortex.

[40]  R Kawashima,et al.  Changes in rCBF during grasping in humans examined by PET , 1996, Neuroreport.

[41]  Marie-Claude Hepp-Reymond,et al.  3 – Precision Grip in Humans: Temporal and Spatial Synergies , 1996 .

[42]  U. Castiello Grasping a fruit: selection for action. , 1996, Journal of experimental psychology. Human perception and performance.

[43]  Roland S. Johansson,et al.  Sensory Control of Dexterous Manipulation in Humans , 1996 .

[44]  A. D. Milner,et al.  Neglect, Extinction, and the Cortical Streams of Visual Processing , 1997 .

[45]  C. Galletti,et al.  Arm Movement‐related Neurons in the Visual Area V6A of the Macaque Superior Parietal Lobule , 1997, The European journal of neuroscience.

[46]  Alan C. Evans,et al.  Transcranial Magnetic Stimulation during Positron Emission Tomography: A New Method for Studying Connectivity of the Human Cerebral Cortex , 1997, The Journal of Neuroscience.

[47]  Luciano Fadiga,et al.  A Parietal-Frontal Circuit for Hand Grasping Movements in the Monkey: Evidence from Reversible Inactivation Experiments , 1997 .

[48]  M. Jeannerod,et al.  Influence of object position and size on human prehension movements , 1997, Experimental Brain Research.

[49]  G. Rizzolatti,et al.  Object representation in the ventral premotor cortex (area F5) of the monkey. , 1997, Journal of neurophysiology.

[50]  Peter Thier,et al.  Parietal Lobe Contributions to Orientation in 3D Space , 1997 .

[51]  M Jeannerod,et al.  Visual pathways for object-oriented action and object recognition: functional anatomy with PET. , 1997, Cerebral cortex.

[52]  G. Rizzolatti,et al.  Parietal cortex: from sight to action , 1997, Current Opinion in Neurobiology.

[53]  Scott T. Grafton,et al.  Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. , 1998, Journal of neurophysiology.

[54]  Michael A. Arbib,et al.  Modeling parietal-premotor interactions in primate control of grasping , 1998, Neural Networks.

[55]  J. F. Soechting,et al.  Gradual molding of the hand to object contours. , 1998, Journal of neurophysiology.

[56]  G. Bock,et al.  Sensory guidance of movement , 1998 .

[57]  C Dohle,et al.  Human anterior intraparietal area subserves prehension , 1998, Neurology.

[58]  G. Rizzolatti,et al.  The organization of the cortical motor system: new concepts. , 1998, Electroencephalography and clinical neurophysiology.

[59]  M. Rushworth,et al.  A primer of magnetic stimulation as a tool for neuropsychology. , 1999, Neuropsychologia.

[60]  N. Logothetis,et al.  Functional imaging of the monkey brain , 1999, Nature Neuroscience.

[61]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[62]  E. Brenner,et al.  A new view on grasping. , 1999, Motor control.

[63]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[64]  U. Castiello Mechanisms of selection for the control of hand action , 1999, Trends in Cognitive Sciences.

[65]  J. F. Soechting,et al.  Force synergies for multifingered grasping , 2000, Experimental Brain Research.

[66]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[67]  E. Robertson,et al.  Neural features of the reach and grasp. , 2000, Motor control.

[68]  Alice C. Roy,et al.  Hand kinematics during reaching and grasping in the macaque monkey , 2000, Behavioural Brain Research.

[69]  Umberto Castiello,et al.  Human inferior parietal cortex ‘programs’ the action class of grasping , 2000, Cognitive Systems Research.

[70]  G. Pearlson,et al.  In vivo visualization of human neural pathways by magnetic resonance imaging , 2000, Annals of neurology.

[71]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[72]  R. Johansson,et al.  Cortical activity in precision- versus power-grip tasks: an fMRI study. , 2000, Journal of neurophysiology.

[73]  A. Milner,et al.  Grasping the past delay can improve visuomotor performance , 2001, Current Biology.

[74]  G. Luppino,et al.  Parietofrontal Circuits for Action and Space Perception in the Macaque Monkey , 2001, NeuroImage.

[75]  H. Forssberg,et al.  Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. , 2001, Journal of neurophysiology.

[76]  G. Rizzolatti,et al.  Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. , 2001, Brain : a journal of neurology.

[77]  E. Brenner,et al.  Independent movements of the digits in grasping , 2001, Experimental Brain Research.

[78]  N. Kanwisher,et al.  Neuroimaging of cognitive functions in human parietal cortex , 2001, Current Opinion in Neurobiology.

[79]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[80]  J. Sanes,et al.  Orderly Somatotopy in Primary Motor Cortex: Does It Exist? , 2001, NeuroImage.

[81]  Carolyn R. Mason,et al.  Hand synergies during reach-to-grasp. , 2001, Journal of neurophysiology.

[82]  Marco Santello,et al.  Patterns of Hand Motion during Grasping and the Influence of Sensory Guidance , 2002, The Journal of Neuroscience.

[83]  Umberto Castiello,et al.  Posterior parietal cortex control of reach‐to‐grasp movements in humans , 2002, The European journal of neuroscience.

[84]  A. Billard,et al.  Comparison between macaques’ and humans’ kinematics of prehension: the role of morphological differences and control mechanisms , 2002, Behavioural Brain Research.

[85]  Soumya Ghosh,et al.  Sensory monitoring of prehension in the parietal lobe: a study using digital video , 2002, Behavioural Brain Research.

[86]  Eli Brenner,et al.  Independent control of the digits predicts an apparent hierarchy of visuomotor channels in grasping , 2002, Behavioural Brain Research.

[87]  G. Rizzolatti,et al.  Motor and cognitive functions of the ventral premotor cortex , 2002, Current Opinion in Neurobiology.

[88]  Y. Rossetti,et al.  Optic ataxia revisited: , 2003, Experimental Brain Research.

[89]  R. E Passingham,et al.  Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study , 2003, NeuroImage.

[90]  Scott Glover,et al.  Optic ataxia as a deficit specific to the on-line control of actions , 2003, Neuroscience & Biobehavioral Reviews.

[91]  A. Milner,et al.  Delayed reaching and grasping in patients with optic ataxia. , 2003, Progress in brain research.

[92]  Ravi S. Menon,et al.  Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas , 2003, Experimental Brain Research.

[93]  C. Galletti,et al.  Role of the medial parieto-occipital cortex in the control of reaching and grasping movements , 2003, Experimental Brain Research.

[94]  M. Goodale,et al.  Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. , 2003, Brain : a journal of neurology.

[95]  Timothy Edward John Behrens,et al.  New approaches for exploring anatomical and functional connectivity in the human brain , 2004, Biological Psychiatry.

[96]  R. Johansson,et al.  Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip , 2004, Experimental Brain Research.

[97]  C. MacKenzie,et al.  The speed-accuracy trade-off in manual prehension: effects of movement amplitude, object size and object width on kinematic characteristics , 2004, Experimental Brain Research.

[98]  Carolyn R. Mason,et al.  Monkey hand postural synergies during reach-to-grasp in the absence of vision of the hand and object. , 2004, Journal of neurophysiology.

[99]  T Brochier,et al.  Patterns of muscle activity underlying object-specific grasp by the macaque monkey. , 2004, Journal of neurophysiology.

[100]  U. Castiello,et al.  Reach to grasp: the natural response to perturbation of object size , 2004, Experimental Brain Research.

[101]  Marc H Schieber,et al.  Hand function: peripheral and central constraints on performance. , 2004, Journal of applied physiology.

[102]  A. Georgopoulos,et al.  Parietal cortex neurons of the monkey related to the visual guidance of hand movement , 1990, Experimental Brain Research.

[103]  R. Johansson,et al.  Visual size cues in the programming of manipulative forces during precision grip , 2004, Experimental Brain Research.

[104]  G. Rizzolatti,et al.  Localization of grasp representations in humans by PET: 1. Observation versus execution , 1996, Experimental Brain Research.

[105]  M. Schieber,et al.  Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract. , 2004, Journal of neurophysiology.

[106]  M. A. Goodale,et al.  Factors affecting higher-order movement planning: a kinematic analysis of human prehension , 2004, Experimental Brain Research.

[107]  S. Glover,et al.  Separate visual representations in the planning and control of action , 2004, Behavioral and Brain Sciences.

[108]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 2004, Experimental Brain Research.

[109]  Alan M. Wing,et al.  Internal models of the motor system that explain predictive grip force control , 2004 .

[110]  Jean-Louis Thonnard,et al.  The cutaneous contribution to adaptive precision grip , 2004, Trends in Neurosciences.

[111]  S. Chieffi,et al.  Coordination between the transport and the grasp components during prehension movements , 2004, Experimental Brain Research.

[112]  Eli Brenner,et al.  On the relation between object shape and grasping kinematics. , 2004, Journal of neurophysiology.

[113]  M. Jeannerod,et al.  Selective perturbation of visual input during prehension movements , 2004, Experimental Brain Research.

[114]  M. Jeannerod,et al.  Selective perturbation of visual input during prehension movements , 1991, Experimental Brain Research.

[115]  Scott T. Grafton,et al.  Cortical topography of human anterior intraparietal cortex active during visually guided grasping. , 2005, Brain research. Cognitive brain research.

[116]  Matthew F. S. Rushworth,et al.  Parietal rTMS Disrupts the Initiation but not the Execution of On-line Adjustments to a Perturbation of Object Size , 2005, Journal of Cognitive Neuroscience.

[117]  T Brochier,et al.  A cortico-cortical mechanism mediating object-driven grasp in humans. , 2005, Proceedings of the National Academy of Sciences of the United States of America.