A path integral approach to age dependent branching processes

Age dependent population dynamics are frequently modeled with generalizations of the classic McKendrick–von Foerster equation. These are deterministic systems, and a stochastic generalization was recently reported in Greenman and Chou (2016 Phys. Rev. E 93 012112, 2016 J. Stat. Phys. 16449). Here we develop a fully stochastic theory for age-structured populations via quantum field theoretical Doi–Peliti techniques. This results in a path integral formulation where birth and death events correspond to cubic and quadratic interaction terms. This formalism allows us to efficiently recapitulate the results in Greenman and Chou (2016 Phys. Rev. E 93 012112, 2016 J. Stat. Phys. 16449), exemplifying the utility of Doi–Peliti methods. Furthermore, we find that the path integral formulation for age-structured moments has an exact perturbative expansion that explicitly relates to the hereditary structure between correlated individuals. These methods are then generalized with a binary fission model of cell division.

[1]  T. Chou,et al.  A Hierarchical Kinetic Theory of Birth, Death and Fission in Age-Structured Interacting Populations , 2015, Journal of statistical physics.

[2]  Tom Chou,et al.  Kinetic theory of age-structured stochastic birth-death processes. , 2015, Physical review. E.

[3]  P. Jagers,et al.  On the establishment, persistence, and inevitable extinction of populations , 2014, Journal of mathematical biology.

[4]  Sidney Redner,et al.  First-passage phenomena and their applications , 2014 .

[5]  Uwe C. Täuber,et al.  Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior , 2014 .

[6]  Z. Brzeźniak,et al.  On the chaotic properties of the von Foerster-Lasota equation , 2014 .

[7]  Thomas Julou,et al.  Budding yeast as a model organism to study the effects of age. , 2014, FEMS microbiology reviews.

[8]  Z. Brzeźniak,et al.  On the chaotic properties of the von Foerster-Lasota equation , 2013, Semigroup Forum.

[9]  Ulf Dieckmann,et al.  A multiscale maximum entropy moment closure for locally regulated space–time point process models of population dynamics , 2011, Journal of mathematical biology.

[10]  T. Rogers Maximum-entropy moment-closure for stochastic systems on networks , 2011, 1103.4980.

[11]  B. Meerson,et al.  Extinction of metastable stochastic populations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Yves Barral,et al.  A mechanism for asymmetric segregation of age during yeast budding , 2008, Nature.

[13]  R. Parthasarathy A Modern Introduction to Quantum Field Theory , 2005 .

[14]  D. Collet Modelling Survival Data in Medical Research , 2004 .

[15]  Fima C. Klebaner,et al.  Population-size-dependent and age-dependent branching processes ☆ , 2000 .

[16]  N. U. Prabhu,et al.  Stochastic Processes and Their Applications , 1999 .

[17]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[18]  D. Mattis,et al.  The uses of quantum field theory in diffusion-limited reactions , 1998 .

[19]  F. Wilczek,et al.  Quantum Field Theory , 1998, Compendium of Quantum Physics.

[20]  R. J. Crewther,et al.  Introduction to quantum field theory , 1995, hep-th/9505152.

[21]  Lee,et al.  Scaling of reaction zones in the A+B-->0 diffusion-limited reaction. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  P. Holgate,et al.  Matrix Population Models. , 1990 .

[23]  D. Zanette A BBGKY hierarchy for the extended kinetic theory , 1990 .

[24]  L. Peliti,et al.  Renormalisation of fluctuation effects in the A+A to A reaction , 1986 .

[25]  L. Peliti Path integral approach to birth-death processes on a lattice , 1985 .

[26]  M. Doi Second quantization representation for classical many-particle system , 1976 .

[27]  M. Doi Stochastic theory of diffusion-controlled reaction , 1976 .

[28]  D. R. Cox Journal of Applied Probability , 1964, Canadian Mathematical Bulletin.

[29]  P. H. Leslie SOME FURTHER NOTES ON THE USE OF MATRICES IN POPULATION MATHEMATICS , 1948 .

[30]  T. E. Harris,et al.  On the Theory of Age-Dependent Stochastic Branching Processes. , 1948, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. H. Leslie On the use of matrices in certain population mathematics. , 1945, Biometrika.

[32]  Kendrick,et al.  Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.

[33]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.

[34]  Kathrin Abendroth,et al.  Evolution In Age Structured Populations , 2016 .

[35]  Jyy-I Hong Coalescence in Bellman-Harris and multi-type branching processes , 2011 .

[36]  Jon Machta,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[37]  Glenn F. Webb,et al.  Population Models Structured by Age, Size, and Spatial Position , 2008 .

[38]  Shigui Ruan,et al.  Structured population models in biology and epidemiology , 2008 .

[39]  New Journal of Physics The , 2007 .

[40]  Hendrik B. Geyer,et al.  Journal of Physics A - Mathematical and General, Special Issue. SI Aug 11 2006 ?? Preface , 2006 .

[41]  M. Schulz,et al.  Exact substitute processes for diffusion–reaction systems with local complete exclusion rules , 2005 .

[42]  M. Maggiore A Modern Introduction to Quantum Field Theory (Oxford Master Series in Physics) , 2005 .

[43]  Tsvi Piran,et al.  Reviews of Modern Physics , 2002 .

[44]  Michael E. Pcstin,et al.  AN INTRODUCTION TO QUANTUM FIELD THEORY , 1997 .

[45]  Giulio Casati,et al.  Quantum chaos : between order and disorder , 1995 .

[46]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[47]  D. Collett Modelling survival data , 1994 .

[48]  ScienceDirect FEMS microbiology reviews , 1993 .

[49]  E. Fradkin,et al.  Field theories of condensed matter systems , 1991 .

[50]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[51]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[52]  E. Crescini Journal de Physique , 1895 .

[53]  P. Verhulst,et al.  Notice sur la loi que la population suit dans son accroissement. Correspondance Mathematique et Physique Publiee par A , 1838 .